
Recursive optimization: Exact and efficient combinatorial optimization
algorithm design principles (DRAFT)

November 13, 2024

Abstract

This thesis presents a generic algorithm design framework for solving combinatorial optimization problems,
it subsumes the classical recursive optimization methods, such as greedy, dynamic programming, divide-and-
conquer, and branch-and-bound methods.

Our framework is grounded in Bird’s theory of the algebra of programming, which is a relational formalism for
deriving efficient algorithms from provably correct specifications. We present this theory in a novel way through
Haskell code, focusing specifically on the context of combinatorial optimization. Additionally, we extend Bird’s
results by incorporating the backtracking technique, which integrates the branch-and-bound method into our
framework, enabling a unified approach to designing recursive combinatorial optimization algorithms.

More broadly, our theoretical foundation is an integration of constructive algorithmics (or transformational
programming), combinatorial generation, and combinatorial geometry. These topics are integrated together
to achieve our final goal—designing efficient combinatorial optimization algorithms. They are interconnected
in such a way that both geometric algorithms for addressing fundamental combinatorial geometry problems
and efficient combinatorial generators can be structured or reformulated systematically using principles from
constructive algorithmics. This approach facilitates the design of efficient (in terms of worse-case complexity
and parallelizability) geometric algorithms and combinatorial generators that are sound and concise. Moreover,
the geometric insights allow us to reveal the combinatorial essence of combinatorial problems, which allows us
to significantly simplify the combinatorial complexity of the problem.

In addition to providing algorithm design principles. To demonstrate the effectiveness of our framework, in
the specialized theory part, we address four fundamental problems in machine learning: classification, clustering,
decision tree, and empirical risk minimization for ReLU neural network. We provide a detailed analysis of
the combinatorial essence of these problems, demonstrating that these problems can be solved in polynomial
time. To the best of our knowledge, all algorithms we propose are the fastest available in terms of worst-case
complexity, and their performance can be further sped up through the acceleration techniques we introduce.
Finally, two example problems are selected to show end-to-end implementations in Haskell. We believe these
implementations provide a clear demonstration of the effectiveness and practical applicability of our proposed
framework.

1

Contents

I Background 6

I.1 Introduction 7
I.1.1 Machine learning . 7
I.1.2 Motivations . 8

I.1.2.1 Why study exact machine learning algorithms for simple (interpretable) models? 8
I.1.2.2 Shortcomings of existing general-purpose exact algorithms 9

I.2 Foundations 11
I.2.1 Combinatorial optimization . 11

I.2.1.1 Combinatorial optimization problem specification . 11
I.2.1.2 Combinatorial generation and combinatorial optimization 12
I.2.1.3 What is an efficient combinatorial generator and where to find it 13
I.2.1.4 Sequential decision process . 13

I.2.2 Combinatorial optimization algorithm design through a modern lens 14
I.2.2.1 An overview of classical combinatorial optimization methods 14
I.2.2.2 Summary of key components in designing efficient combinatorial algorithms 16
I.2.2.3 Relationships between different combinatorial optimization methods 17
I.2.2.4 Example: deriving efficient dynamic programming algorithm from scratch 18

I.2.3 Structured recursion schemes . 19
I.2.3.1 What is recursion . 20
I.2.3.2 Structured recursion and generative recursion . 20
I.2.3.3 Development history of constructive algorithmics . 20

I.2.4 Category theory and Haskell . 22
I.2.4.1 Categories and functors . 22
I.2.4.2 Universal constructions . 23
I.2.4.3 Introduction to Haskell . 24

I.3 An overview of the thesis 28
I.3.1 General theory – Principles for designing efficient combinatorial optimization algorithms 28
I.3.2 Specialized theory – designing tractable algorithms for fundamental problems in machine learning 28
I.3.3 End-to-end implementation in Haskell . 29

I.4 Contributions 30

II General theory: Principles for designing efficient combinatorial optimization
algorithms 31

II.1 Combinatorial generation 32
II.1.1 Containers/datatypes . 32
II.1.2 Sequential decision process for basic combinatorial structures . 33

II.1.2.1 Sequential decision process combinatorial generator in Haskell 33
II.1.2.2 Sublists, sequence and K-sublists . 33
II.1.2.3 Assignments . 36
II.1.2.4 Permutations . 36
II.1.2.5 K-permutations . 37
II.1.2.6 List partitions . 38

II.1.3 Lexicographic generation . 39
II.1.4 Combinatorial Gray codes . 40

II.1.4.1 Sublists . 40
II.1.4.2 K-sublists . 42
II.1.4.3 Permutations . 43

II.1.5 Integer sequential decision process combinatorial generator . 44
II.1.5.1 The binary reflected Gray code SDP generator . 45

2

II.1.5.2 K-combination SDP generator with revolving door ordering 45
II.1.6 Chapter discussion . 48

II.2 Constructive algorithmics 50
II.2.1 What is constructive algorithmics and why we need to care about it? 50
II.2.2 Algebraic datatypes and catamorphism . 51

II.2.2.1 An illustrative example: snoc-list . 51
II.2.2.2 Polynomial functors . 52
II.2.2.3 F-algebras and universal algebra . 54
II.2.2.4 Catamorphism characterization theorem . 55
II.2.2.5 Various useful recursive datatypes . 57

II.2.3 Catamorphism combinatorial generation . 59
II.2.3.1 Cross product operator . 60
II.2.3.2 Catamorphism generators based on cons-list . 60
II.2.3.3 Catamorphism generators based on join-list . 63
II.2.3.4 Built complex combinatorial structures from the simpler basic structures 65

II.2.4 Structured recursion schemes . 69
II.2.4.1 Anamorphism . 69
II.2.4.2 Hylomorphism . 70
II.2.4.3 Hylomorphisms and divide-and-conquer algorithms . 71
II.2.4.4 Recursive coalgebras . 73

II.2.5 Foundations for the algebra of programming . 74
II.2.5.1 Motivations for using relational algebra . 74
II.2.5.2 Definition of relation . 74
II.2.5.3 Reformulate the combinatorial optimization problem specification 75
II.2.5.4 Relational F-algebras . 76
II.2.5.5 Monotonic algebras . 77

II.2.6 Thinning . 78
II.2.6.1 What is thinning . 78
II.2.6.2 Different implementations of thinning . 81
II.2.6.3 Dominance relations . 83

II.2.7 Backtracking and branch-and-bound . 85
II.2.8 Recursive optimization framework . 87

II.2.8.1 Hylomorphism recursive optimization framework . 87
II.2.8.2 Catamorphism recursive optimization framework . 88

II.2.9 Reconcile combinatorial optimization methods . 89
II.2.10 From theory to practice . 89

II.2.10.1 Maximum sublist sum problem . 90
II.2.10.2 Sequence alignment problem . 91

II.2.11 Chapter discussion . 93

II.3 Combinatorial geometry 95
II.3.1 Foundations . 95

II.3.1.1 Affine varieties and polynomials . 95
II.3.1.2 Arrangements . 96
II.3.1.3 The combinatorial complexity of the arrangements . 97
II.3.1.4 Points and hyperplanes duality . 99
II.3.1.5 Voronoi diagram . 99

II.3.2 Classification problems and duality . 101
II.3.2.1 Linear classification and duality . 101
II.3.2.2 Growth function and the complexity classification problem 104
II.3.2.3 Non-linear (polynomial) classification and Veronese embedding 104

II.3.3 Methods for cell enumeration . 105
II.3.3.1 Linear programming-based method for cell enumeration . 106
II.3.3.2 Hyperplane-based method for cell enumeration . 109
II.3.3.3 Efficiency of cell enumeration methods in combinatorial optimization 110

II.3.4 Euclidean Voronoi diagram and K-means problem . 112

3

II.3.4.1 K-means problem and Euclidean Voronoi partition . 112
II.3.4.2 The optimality of the K-means problem . 113
II.3.4.3 The sign vector of the Euclidean Voronoi diagram . 113
II.3.4.4 Variable replacement and optimal K-means clustering . 115
II.3.4.5 Duality and 2-means problem . 116

II.3.5 Chapter discussion . 116

III Specialized theory: Designing tractable algorithms for fundamental problems
in machine learning 118

III.1 Terminology 119

III.2 Classification problem 120
III.2.1 Related studies . 120
III.2.2 Problem specification . 121
III.2.3 The combinatorial essence of the linear classification problem . 122

III.2.3.1 Hyperplane-based (H-based) algorithm . 122
III.2.3.2 Linear programming-based (LP-based) algorithm . 123

III.2.4 Further discussions . 124
III.2.4.1 Difference between H-based algorithm and LP-based algorithm 124
III.2.4.2 Non-linear (polynomial hypersurface) classification . 125
III.2.4.3 Margin loss linear classifier . 125

III.3 Empirical risk minimization for ReLU network 127
III.3.1 Related studies . 128
III.3.2 Problem specification . 128
III.3.3 The combinatorial essence of the ReLU network . 128

III.3.3.1 Hyperplane-based method . 129
III.3.3.2 Linear programming-based method . 131

III.3.4 Further discussion . 132
III.3.4.1 Acceleration methods . 132
III.3.4.2 Applying integer SDP generator to save memory . 132

III.4 Decision tree problems 132
III.4.1 Related studies . 133
III.4.2 Problem specification . 134
III.4.3 The combinatorial essence of decision tree problems . 134
III.4.4 Efficient hyperplane decision tree generators . 136

III.4.4.1 Difficulties in constructing a hyperplane decision tree (K-permutation of hyperplanes) gen-
erator . 136

III.4.4.2 Haskell implementation of the combination-permutation nested generator 137
III.4.5 Further discussion . 140

III.4.5.1 Acceleration techniques . 140

III.5 The K-clustering problems 141
III.5.1 Related studies . 141
III.5.2 Problem specification . 141
III.5.3 The combinatorial essence of the K-clustering problems . 142

III.6 Time-space complexity trade-off in designing exact algorithms 143

IV End-to-end implementation in Haskell 145

IV.1 0-1 loss linear classification algorithm 146
IV.1.1 An efficient combination-sequence generator . 146
IV.1.2 Exhaustive, incremental cell enumeration based on join-list . 147

4

IV.1.3 Empirical analysis . 151
IV.1.3.1 Real-world data set classification performance . 151
IV.1.3.2 Out-of-sample generalization tests . 151
IV.1.3.3 Run-time complexity analysis . 151

IV.2 Exact K-medoids algorithm 155
IV.2.1 Exhaustive, K-medoids enumeration based on join-list . 155
IV.2.2 Empirical analysis . 157

IV.2.2.1 Performance on real-world datasets . 157
IV.2.2.2 Time complexity analysis for serial implementation . 157

IV.3 Discussion 159

A Proofs 171

5

Part I
Background
Our journey begins with a brief overview of machine learning and the motivation for studying exact algorithms.
Understanding the motivation behind exact algorithms is crucial, as it provides the impetus for exploring more
accurate and efficient solutions to complex learning problems. Current approaches for finding globally optimal
exact solutions in machine learning relies solely on the branch-and-bound (BnB) algorithms and mixed-integer
programming solvers. However, these general-purpose algorithms are far from perfect and usually have exponential
complexity in the worst-case. The appreciation of the drawbacks of these general-purpose algorithms will highlight
the importance of our research and point us in the right direction in order to solve these issues.

Following this, the chapter transitions into a thorough discussion of the prerequisite foundational knowledge
essential for a deeper comprehension of the thesis.

The second chapter covers four key topics. In the first two sections, we discuss combinatorial optimization
problems, addressing questions such as: How is a combinatorial optimization problem specified? What are the
classical methods for solving these problems? How are these methods integrated into our framework, and what
is the algorithm design process within this framework? The discussion here aims to provide an informal intuition
rather than a rigorous exposition. The next two sections focus on Structured Recursion, Category Theory, and
Haskell. As the title of this thesis suggests, the optimization methods discussed in this thesis are recursions,
particularly structured recursions, which provide a guarantee of termination. Category theory and Haskell are the
primary theoretical tool and programming language used in this thesis. Category theory is explored as a means of
formalizing and abstracting algorithmic principles, while the strongly-typed, side-effect-free functional programming
language Haskell enables us to produce rigorous and reliable code.

A comprehensive overview of the thesis is provided in the third chapter, outlining the connections between the
discussed topics and how they are combined to tackle difficult combinatorial problems. Together, the discussion in
this part build a solid foundation for the subsequent exploration of the intriguing relationships between combinatorial
optimization, algorithm design, combinatorial optimization and machine learning in the remainder of the thesis.

Finally, the contributions of this thesis are summarized in Chapter four.

6

I.1 Introduction
I.1.1 Machine learning
What is machine learning Humans acquire knowledge by learning, and constantly learning lets us know how
to think, understand, predict and make better decisions. The field of artificial intelligence (AI) tries to build
an intelligent machine which can think and act like the human species. Machine learning (ML) has been widely
recognized as a subfield of AI, and today the terms machine learning and artificial intelligence are often used
interchangeably. After many decades of steady progress, machine learning has now entered a phase of very rapid
development. Applications of machine learning are becoming ubiquitous, it has a revolutionized impact on almost
any field where computation plays a role.

Scientists often assume that a stable underlying mechanism exists, which is organized to form nature [Pearl
et al., 2016]. The main task of machine learning is to recover the underlying mechanism through an inductive
learning process on a finite number of electronic data. The problems in ML involve human-labelled datasets are
called supervised learning problems. Typical examples of supervised learning problems include classification and
regression. The algorithms for the classification problem have output restricted to a finite set of values (usually
a finite set of integers, called labels). The algorithms for regression problems have output restricted to numerical
values like real values. On the other hand, problems involving unlabelled data are called unsupervised learning
problems, the K-clustering problems and dimension reduction problems are examples.

The focus of machine learning research is to develop accurate models for prediction/prescription by designing
efficient and robust algorithms. A common method to assess the quality of a model is to evaluate its prediction
accuracy on unseen (test) datasets. Since the distribution of unseen data is typically unknown, we generally assume
that it matches the distribution of the training data. Consequently, many robust algorithms aim to find a model
with the lowest objective value within a given hypothesis set H1 on training data sets. This approach is known as
empirical risk minimization (ERM). According to the results in statistical learning theory, when the distribution of
the training dataset is the same as the distribution of the test dataset, the ERM model not only performs best on
the training data but also provides the tightest upper bound for prediction error [Mohri et al., 2018].

Objectives of machine learning problems and their optimization methods Nevertheless, due to the finite
nature of data, most machine learning tasks are defined to optimize a combinatorial objective function, which is
determined by the combinatorial structure of the problem. For instance, in classification problems, the objective
is to minimize the number of misclassifications. Similarly, in K-clustering problems, the objective is to find K
centroids that minimize the within-class distances of data points assigned to each centroid. In optimization, solving
a problem with a discrete objective is typically much more difficult than solving one with continuous objective.
Therefore, for most of the machine learning problems, finding the ERM solution with a combinatorial objective is
computationally intractable [Little, 2019].

Alternatively, the combinatorial objectives are replaced with the convex surrogate objective functions, which
are differentiable and smooth. Then, various continuous optimization methods, such as gradient descent, can be
applied. On the other hand, solving ML problems using combinatorial optimization methods is particularly scarce.
This disparity arises from several factors:

1. Problems are defined over continuous variables. Although many ML problems possess a combinatorial
nature, the variables used to optimize machine learning problems are defined over continuous variables [Bishop,
2006].

2. Intractable combinatorics. The combinatorics of many ML problems are exponentially large, and many
of these problems have been proven to be NP-hard [Mohri et al., 2018, Little, 2019].

3. Continuous optimization methods are well-studied. Studies on continuous optimization methods are
well-established in ML research, and off-the-shelf convex optimization solvers are easy to use, often converging
quickly with low polynomial-time complexity in the worst case [Boyd and Vandenberghe, 2004]. However,
combinatorial optimization methods have not been systematically studied in ML research.

4. The success of continuous optimization algorithms. The most successful algorithms in ML research are
all stochastic or continuous optimization algorithms [Hastie et al., 2009], such as Markov chain Monte Carlo
(MCMC) methods, the expectation-maximization (EM) algorithm, and the gradient descent algorithm.

1A set of functions mapping features to the set of predictions.

7

However, these continuous optimization algorithms provide no guarantee that the exact (globally optimal) solution
can be obtained for difficult combinatorial optimization problems. In high-stakes or safety-critical applications,
where errors are unacceptable or carry significant costs, we want the best possible partition given the specification
of the clustering problem. Only an exact algorithm can provide this guarantee. To address the lack of a universal
framework for designing exact combinatorial optimization algorithms, the focus of this thesis is to develop a frame-
work that offers a generic solution for designing practical algorithms for solving combinatorial machine learning
problems exactly.

Machine learning problems concerned in this thesis The main subjects examined in this thesis are com-
binatorial machine learning problems related to finite data points and hyperplanes. There are three reasons for
focusing on these two objects. First, machine learning is inherently data-driven, and almost all problems in this
field involve finite amounts of data. Second, the most successful models in machine learning, such as ReLU neural
networks, decision trees, and support vector machines, are linear or piecewise linear (PWL) models. Therefore,
studying the theory related to hyperplanes will help us gain a better understanding about the combinatorial essence
of these PWL models.

Finally, due to the simplicity of finite data points and hyperplanes, these subjects are well-studied in combi-
natorial geometry. Almost all problems involving finite sets of points or hyperplanes are combinatorial. However,
strictly classifying a problem as either combinatorial or non-combinatorial is neither reasonable nor desirable [Edels-
brunner, 1987]. As we will discuss in Section I.2.1, many ML problems can be specified as mixed continuous-discrete
optimization problems (MCDOP), where the objective functions can either be defined continuously or combinato-
rially.

I.1.2 Motivations
I.1.2.1 Why study exact machine learning algorithms for simple (interpretable) models?

The goal of learning

George Dantzig: The final test of any theory is its capacity to solve the problems which originated it.

This quote from George Dantzig [Dantzig, 2016] aptly states the importance of studying exact algorithms in ma-
chine learning, where the ultimate goal is to learn a model which is both accurate (exact) and easily understood
(interpretable), so that we can be confident the predictions are meaningful. This is what exact algorithms can offer,
a provably exact algorithms will always select the best solution in the hypothesis set. In other words, a provably exact
algorithms cannot be improved in terms of accuracy. In contrast, while approximate algorithms offer advantages in
terms of efficiency and scalability, the potential risks associated with inaccuracies and lack of reliability must be
carefully considered.

In most practical engineering applications, it might not important whether the global optimal solution is found,
but it always matters that a solution is as high-accuracy as is feasible. The choice between approximate and exact
algorithms ultimately depends on the specific requirements of the application and the trade-offs between speed,
accuracy, and reliability. Ideally, we aim to determine the necessary computational effort to achieve a specified
level of accuracy. Given that our exact algorithms have a polynomial-time worst-case guarantee, this trade-off can
be managed with a high degree of precision. In contrast, this trade-off is generally not possible for most machine
learning algorithms. For instance, deep learning models trained using stochastic gradient descent may require a few
hours to achieve a desired level of accuracy, or several days for the same, yet no theory exists to predict this with
certainty. It is far superior to have reliable information about the trade-off which comes from having a predictable,
polynomial-time algorithm.

The myth of accuracy and interpretability trade-off Advancements in computer vision and natural lan-
guage processing have led to a widespread belief that the most accurate models must be inherently uninterpretable
and overparameterized.This has led to an unquestioned belief in a trade-off between accuracy and interpretability—
namely, that an interpretable model cannot surpass an uninterpretable one in predictive accuracy. This miscon-
ception can be traced back to the early problems that machine learning research aimed to address. As Rudin and
Radin [2019] note, “This belief stems from the historical use of machine learning in society: its modern techniques
were born and bred for low-stakes decisions such as online advertising and web search where individual decisions
do not deeply affect human lives.”

A recent empirical finding is that models with highly complex hypothesis sets such as deep neural networks
and random forests can be made to have zero or close to zero loss on the training data and yet still perform well

8

out-of-sample. This effect seems particularly pronounced for high-dimensional data such as digital images in low-
stakes decision problems (on tabular data, tree-based algorithms still outperform complex deep learning classifiers
on various datasets, see Grinsztajn et al. 2022, Shwartz-Ziv and Armon 2022 for more details). This finding seems to
contradict classical learning theory. An explanation for this phenomenon is that these apparently overparameterized
models achieve excellent performance through regularized interpolation rather than through regularized statistical
fitting of a decision boundary model [Belkin et al., 2018, 2019b,a]. For instance, AdaBoost and random forests
which are maximally large (interpolating) decision trees achieve this same generalization behavior [Belkin et al.,
2019a]. Such models are said to be operating in the interpolation regime.

This empirical observation has somewhat led to a more blind belief that there exists a trade-off between accuracy
and interpretability. However, this is not necessarily true for problems that have structured data with meaningful
features, there is often no significant difference in performance between more complex classifiers (deep neural
networks, boosted decision trees, random forests) and much simpler classifiers (logistic regression, decision lists)
after preprocessing [Rudin, 2019]. Therefore, a significant practical advantage for exact algorithms arises when we
do not know the ground truth, but we would prefer a very simple model for the purposes of interpretability. In
many high-stakes applications such as medical decision-making or criminal justice [Rudin and Radin, 2019, Holte,
1993, Rudin, 2019] it is important that the decisions made by the model are easily understood.

Moreover, in many scientific knowledge discovery domains, it is crucial to understand what has been “learned”
from the data, rather than relying on a high-accuracy “black box” model whose predictions lack interpretability.
For example, if an interpretable linear model makes it possible to identify a chemical reaction or systematically
construct novel materials, this can be a useful contribution to scientific discovery in itself, possibly more useful than
a complex nonlinear model which is hard to understand even if it has higher classification accuracy than a linear
model.

Does the exact solutions overfit the data? One of the main criticisms of exact algorithms is that finding the
global optimal solution can lead to overfitting. This concern arises from the fact that, with small data sets, the
generalization bounds in learning theory are not sufficiently tight, causing the accuracy of the resulting solution
to be significantly affected by data quality and noise. Consequently, it seems reasonable to believe that exact
algorithms may not be useful when dealing with small data sets.

However, we hold an opposing view: exact algorithms not only produce more accurate models relative to the
ground truth but are also more robust to poor-quality data. For example, past research on the optimal classification
tree problem has shown that when data sizes are small, approximate algorithms (e.g., CART) demonstrate poor
approximation to the ground truth. However, as training data increases, these approximate algorithms become as
accurate out-of-sample as other methods [Bertsimas and Dunn, 2017].

In data-poor environments, approximate algorithms perform significantly worse than exact algorithms in terms
of out-of-sample accuracy [Bertsimas and Dunn, 2017]. This provides strong evidence against the notion that
optimal methods tend to overfit the training data in data-poor applications. Similar results have also been observed
in research on the linear classification problem [He and Little, 2023] and the K-medoids problem [He and Little,
2024], where the difference between exact and approximate algorithms is most significant with small data sizes and
diminishes as data size increases.

I.1.2.2 Shortcomings of existing general-purpose exact algorithms

When obtaining exact solutions for problems with intractable combinatorics, the general-purpose algorithms2 such
as branch-and-bound (BnB) algorithms and the off-the-shell mixed-integer programming (MIP) solvers (Groubi,
GLPK, CPLEX for instance) are ubiquitous, but these algorithms normally possess exponential time and space
complexity in the worst-case. This inclination to use general-purpose algorithms for obtaining exact solutions arises
from the perceived intractable combinatorics of many ML problems, and most of these problems are classified as
NP-hard so that no known algorithm can solve all instances of the problem in polynomial time.

However, for many ML problems, the problems specified for proving NP-hardness are not the same as their origi-
nal definitions used in practical ML applications. Hence the polynomial-time algorithm do exist for many “NP-hard
problems.” For instance, we have successfully developed two polynomial-time algorithms for solving the K-medoids
problem [He and Little, 2024] and the 0-1 loss linear classification problem [He and Little, 2023]. Similarly, the
polynomial time algorithms for solving the K-means problem have also been developed [Inaba et al., 1994, Tîrnăucă
et al., 2018]. If the polynomial-time algorithms do exist for these seemingly intractable combinatorial problems,
relying on general-purpose algorithms such as MIP solvers or BnB algorithms—both of which exhibit exponential

2general-purpose algorithms

9

complexity in the worst case and offer limited insight into the problem itself—can hinge our understanding of the
fundamental principles involved, such as the combinatorial and the geometric properties of the underlying problem.

We have identified several limitations of these general-purpose algorithms that must be addressed urgently:

1. Lack of formal proof. The correctness of these algorithms is often unclear or relies on tedious induction.
Exact solutions require rigorous mathematical proof, yet many BnB studies rely on weak assertions or informal
explanations that do not hold up under close scrutiny [Fokkinga, 1991]. A formal proof for exact CO algorithms
should derive from an exhaustive search specification,

2. Lack of systematic characterization. Most existing general-purpose algorithms are designed in an ad-hoc
manner through intuitions. The insights obtained from one particular problem are very hard to be used for
another.

3. No worst-case guarantee. The worst-case time and space complexity analysis is rarely reported in studies
of BnB algorithms. Indeed, many of these general-purpose algorithms exhibit exponential worst-case time
and space complexity, yet this critical aspect is often neither discussed nor analyzed rigorously. Consequently,
existing studies on exact algorithms for many machine learning problems either omit time complexity anal-
ysis or overlook essential details. This omission undermines the reproducibility of findings and impedes the
advancement of knowledge in this domain.

4. Parallel implementation. The success of many powerful algorithms can be attributed to their parallel
implementations. Embarrassingly parallel programs—programs where processes require no communication
or dependencies—are crucial for solving intractable combinatorial optimization problems, especially NP-hard
problems, for which no polynomial-time algorithm exists. An embarrassingly parallel program might be
the only feasible approach for solving large-scale problems. However, such powerful techniques are rarely
discussed or utilized in the study of these general-purpose algorithms. Indeed, the embarrassingly parallel
implementation is very difficult to achieve for algorithms based on generative recursions (see Subsection I.2.3.2
for definition), such as cutting-plane algorithms.

5. Acceleration techniques. Although many acceleration techniques, such as upper bound/lower bound, dom-
inance relations, are commonly used in BnB studies, they are rarely discussed formally. Detailed explanations
of how to implement these techniques efficiently are often omitted.

6. Flexibility to incorporate constraints. General-purpose algorithms either struggle to incorporate various
constraints, or the impact of these constraints on time and space complexity is often unclear.

To overcome the shortcomings of general-purpose algorithms, it is necessary to challenge the status quo and adopt
new algorithm design methods. In this thesis, we take a fundamentally different approach by using a generic
algorithm design formalism known as transformational programming or constructive algorithmics. By integrating
concepts from combinatorial geometry, and combinatorial generation, we introduce a novel framework for designing
efficient CO algorithms in a broader optimization context. We refer to this framework as the Recursive Optimization
Framework (ROF).

We believe that, by showing many seemingly intractable or even NP-hard problems can be solved exactly in
polynomial time (with some fixed parameters), will illuminate the path to designing reliable and tractable CO
algorithms that are sound and concise.

10

I.2 Foundations
In this section, we outline the foundational concepts frequently used throughout this thesis. The discussion here
is intentionally informal rather than mathematically rigorous, focusing on providing an intuitive understanding of
the essential principles. We will briefly explain key ideas such as sequential decision processes, category theory,
recursion, and combinatorial optimization. More formal and detailed discussions of these concepts are provided in
Part II.

We argue that it is preferable to derive algorithms from a correct specification, using simple, calculational steps,
a process known as program calculus (or transformational programming). This requires treating programs as if they
are mathematical functions, and it is for this reason we develop our algorithm in a strongly-typed and side-effect
free functional programming language, specifically Haskell. A short introduction to Haskell is given in Subsection
I.2.4.3.

I.2.1 Combinatorial optimization
I.2.1.1 Combinatorial optimization problem specification

In ML studies, the common task for ML algorithms is to learn an accurate model h in a hypothesis set H, with
respect to a data set D consists of N independent and identically distributed (i.i.d.) data points (or data items) xn,
∀n ∈ {1, . . . , N} = N , where the data points xn ∈ RD and D is the dimension of the feature space. For supervised
learning problems, each data point is associated with a unique true label tn : T. For regression task tn is a real value
R, and tn ∈ {0, 1} or tn ∈ {0, 1, . . .K} for binary or multiclass classification tasks respectively. All true labels in
this dataset D are represented by a vector t = (t1, t2, ..., tN)

T or list t = [t1, t2, ..., tN]. The dataset with additional
true labels vector is denoted by Dt.

The hypothesis h in H can either be defined continuously by a continuous parameter µ in RDor combinatorially
by a discrete parameter (combinatorial configuration) s in a combinatorial search space S. The task of a learner
(algorithm) is to use dataset D to hypothesis hD ∈ H that has a small generalization error. However, the learner can
measure the empirical error of a hypothesis on the dataset Dt that minimizes the following mixed continuous-discrete
objective function

E (s,µ, θ) =
∑
n∈N

l (xn, tn;µ, s, θ) , (1)

where the loss function l has type l : RD × T × RM × S × Θ → R, and θ : Θ is the model hyperparameter. For
most ML problems, the hypothesis h : H is parameterized solely by a continuous parameter µ. Once the continuous
parameter µ is fixed, it is often that the discrete parameter s can be uniquely determined by µ. This correspondence
is usually a surjective map, meaning that many continuous parameters µ can determine the same discrete parameter
s. This is because the combinatorial search space S typically consists of a finite number of elements, whereas the
continuous space RD has infinite combinatorial complexity. This correspondence implies the existence of equivalence
relations among different µ , defined in terms of their relationship to s.

The problems considered in this thesis can all be specified as the following mixed continuous-discrete optimization
problem (MCDOP)

(ŝ, µ̂) = argmin
s′∈p(S),µ′∈RD

E (s′,µ′, θ′) , (2)

where p : S → B is a predicate function, it returns true if configuration S satisfies the constraints of the problem.
In this thesis, we consider these MCDOPs from a different perspective, and start by specifying these problems in

different styles. In the theory of transformational programming (constructive algorithmics) [Bird and De Moor, 1996,
Jeuring, 1993], combinatorial optimization problems such as (2) are solved using the following generate-evaluate-
filter-select (exhaustive search) paradigm

s∗ = selE (filterp (evalE (gen (D)))) , (3)

where the generator function gen : D → [S], enumerates all possible combinatorial configurations s in search space
S and stored them in a list. For most problems, gen is a recursive function so that the input of the generator can
be replaced with the index set N and rewritten gen (n), ∀n ∈ N . The evaluator evalE :

[[
RD
]]

→
[([

RD
]
,R
)]

computes the objective values r = E (s) for all configurations s generated by gen (n) and returns a list of tupled
configurations (s, r). The filter function filterp : [(S,R)] → [(S,R)] filter out all infeasible configurations and retains
only those which returns true by the predicate p : (S,R) → Bool. The predicate function receives a tuple (s, r) and

11

returns true if configuration s satisfies the condition. Lastly, the selector selE : [(S,R)] → (S,R) select the best
configuration s∗ with respect to E.

In functional programming communities, (3) is often expressed in a more compact point-free function composition
style as

mcdop = selE · filterp · evalE · gen, (4)

where · represents the functional composition operator, and this specification has type mcdop : D → (S,R). The
astute reader may notice that the input D is left implicitly in (4), this is because of the use of currying in point-
free programming, the function can be partially applied, and the type of the input can be inferred from the type
declaration. We will see this style very often when we program in Haskell. Taking a different perspective, the
specification mcdop can also be considered as a generic program for solving (2) exactly, it is known as brute-force
algorithm: by generating all possible configurations in the search space S, evaluating the corresponding objective
E for each, and selecting an optimal configuration, it is clear that it must solve the problem (2) exactly. However,
program (4) is generally inefficient due to combinatorial explosion; the size of gen (D) is often exponential (or worse)
in the size of D.

To make this exhaustive solution practical, the focus of this thesis is to develop a framework for designing
efficient CO algorithms from provably correct specification (4), thus the correctness of the algorithm is assured yet
ensuring efficiency. Furthermore, classical combinatorial optimization algorithms, such as greedy algorithm, dynamic
programming (DP), divide-and-conquer (D&C), branch-and-bound (BnB) are unified in the same framework. In
our framework, efficient recursive algorithms can hence be derived as long as the conditions for the corresponding
theorems are satisfied. This approach allows us to rigorously construct efficient CO algorithms from provably correct
specifications, avoiding tedious induction proofs or informal explanations.

I.2.1.2 Combinatorial generation and combinatorial optimization

Following the above discussion, (4) presents a universal approach for solving any COP, provided that the generator
for the given problem is known. Indeed, one of the central topics of this thesis is to explain how to design an efficient
combinatorial generator. This is because we found that once we have efficient brute-force algorithm, the efficient
CO algorithm for this problem will follows immediately.

Some readers might find this claim surprising, given that brute-force algorithms are typically considered ineffi-
cient due to their exhaustive nature. Indeed, traditional brute-force methods are often horribly inefficient, especially
for large-scale problems, as they fail to use any structure or heuristics to reduce the search space. The key insight
is that both the efficient generator and the CO algorithm for a problem often require exploring the same principles
but within different algebraic structures. We hope this concern will be addressed through the discussions in this
thesis.

One notable principle is distributivity, in its simplest form, states that ab + ac = a × (b+ c). The solution
of the left-hand side is equivalent to the right-hand side, but the left-hand side of this equation involves three
arithmetic operations, whereas the right-hand side needs only two. In the context of optimization, the min and
+ operator also have distributivity, we have property minx + min y = min {a+ b | a ∈ x ∧ b ∈ y}. Assume x, and
y are length N lists, the right side involves N2 arithmetic operations whereas the left side involves only 2N + 1
computation. Distributivity also exists in the context of combinatorial generation, a detailed example will be
provided in Subsection I.2.2.4.

Indeed, in the study of information theories [Aji and McEliece, 2000, Kschischang et al., 2001], it has long been
recognized that a large family of fast algorithms, including Viterbi’s algorithm and the fast Fourier transform (FFT)
can be derived from a generalized distributivity law. Similarly, distributivity plays an important role in designing
efficient combinatorial generation algorithms. This similarity is not a coincidence. In Chapter II.2, we will discuss
this correspondence more formally within our categorical framework. Our previous work on polymorphic dynamic
programming also explains their correspondence by using a semiring algebraic framework [Little et al., 2024].

In this thesis, we will also explore how the generalization of distributivity—monotonicity—plays a crucial role
in designing efficient exhaustive search algorithms, and consequently, efficient combinatorial optimization (CO)
algorithms.

Furthermore, we will see that classical combinatorial optimization (CO) methods—such as greedy, DP, D&C,
and BnB—are characterized by the structure of their corresponding combinatorial generators. One important class
of generator is the sequential decision process (SDP), which involves subdividing the problem sequentially, leading
to an iterative structure in the resulting algorithms. Greedy algorithms, BnB algorithms, and some of the DP
algorithms are all characterized by SDPs. In contrast, D&C method correspond to combinatorial generators with

12

a different structure; they involve subdividing the original problem into subproblems in all possible ways (usually
binary splits), rather than sequential decomposition as seen in SDP.

Characterizing different CO algorithms in terms of the structure of their corresponding generators offers several
advantages:

1. Focus on generator design: It allows us to concentrate on designing an efficient CO generator, which is
often simpler than directly designing an efficient CO algorithm

2. Reusability: Since many COPs share similar combinatorial structures, a generic combinatorial generator
can be reused for various problems, whereas CO algorithms are typically problem-specific.

3. Flexible design: It is often the case that various generators exist for the same combinatorial structure, each
with the same asymptotic complexity but different properties. This flexibility allows for the design of tailored
CO algorithms that are more efficient for specific tasks.

I.2.1.3 What is an efficient combinatorial generator and where to find it

Before discussing how to construct an efficient combinatorial generator, we must first answer the question of how to
compare the efficiency of different generators. For most combinatorial structures, the size of the configuration space
is usually polynomially or exponentially large. As a result, a generator with optimal efficiency would inherently
exhibit polynomial or exponential time complexity, given the need to store such a large number of configurations
in memory. Although each combinatorial structure can be generated in various ways by different generators, these
generators typically share the same optimal asymptotic complexity when exhaustively generating all configurations.
However, different generators are often designed for specific purposes rather than exhaustive generation alone.
Consequently, they may have different constant factors, which are obscured by Big O notation, leading to differences
in their practical performance. Therefore, relying solely on Big O notation is insufficient for a comprehensive analysis
of the efficiency of these algorithms.

An ideal combinatorial generator should have constant amortized time (CAT), meaning that the amount of
computation is proportional to the number of objects listed. In other words, each configuration should take constant
time to generate. The smaller this constant, the more efficient the generator is.

The key to constructing a CAT generator lies in identifying common substructures shared among configurations,
which involves a efficient factorization to the combinatorics of the problem. This can be considered as a semantic
interpretation of Bellman’s principle of optimality [Bellman, 1954]. For instance, if we want to construct combina-
torial structures x = [a, b, c] and y = [a, b, d], it is more efficient to first construct their shared part, [a, b], and then
construct x, y subsequently.

The majority of “optimally efficient” generators are closely related to a recursive program known as the sequential
decision process. In Section II.1.2, we will first introduce a range of efficient SDP-based generators, including
those for such as permutations, subsets, K-permutations, K-combinations (K-subsets), sequences, and partitions
(segmentation). These generators will serve as a comprehensive library that can be directly applied to future
combinatorial optimization tasks.

In addition to discussing existing combinatorial generators, in Chapter II.2 of Part II, we will explore the abstract
forms of these generators and develop several generic principles for designing sophisticated combinatorial generators
from basic ones. These basic SDP generators can serve as“atoms” used to create more complex “compounds” by
applying various algebraic rules.

Given the critical importance of SDP in our work, we will first illustrate its basic concept to provide the audience
with some intuition before illustrating a more detailed discussion in Section II.2.2 of Chapter II.2.

I.2.1.4 Sequential decision process

The sequential decision process is probably one of the most frequently used methods in combinatorial optimization
and generation. It is also known as sequential iteration or sequential recursion. In the original paper of Bellman
on dynamic programming, Bellman 1954 vaguely characterizes the SDP as the general problem of sequential choice
among several actions. De Moor [1995] gives a more precise definition of what is SDP, the sequential nature is
captured by expressing it as an instance of the operator fold. Readers who are not familiar with functional
programming may not familiar with this operator as well. In Haskell, foldr is defined as

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (a:xs) = a `f` (fold f e xs)

13

where f :: a -> b -> a is a binary operator with infix notation `f`3, the function foldr traverses the list
(a:xs) = [a,a1,..,an](: is the operator that append a element to the list) recursively from right to left starting
with the seed value e. In other words, foldr f e [a,a1,..,an] = a `f` (a1 `f` ... (an `f` e)). We will
sometimes refer to the SDP defined solely by the foldr operator as the “ordinary SDP” to distinguish it from
extensions of the SDP.

We have noted that greedy algorithms, DP, and the BnB method can all be characterized as SDP. However,
there are several characteristics that seem to be missing from this definition of SDP compared to existing DP and
BnB algorithms.

First, many DP algorithms work with integer inputs, such as those used for calculating the Fibonacci sequence
or Catalan numbers, which take a natural number n ∈ N as input. This can lead to issues, as natural numbers and
finite-length lists are different data types, and many programs must be rewritten repeatedly for different data types.
This occurs because many programming languages do not allow the programmer to abstract from the structure
of the data that the program manipulates, and thus programs need to be rewritten time and again for different
datatypes.

Second, in the definition of foldr, each recursive step depends solely on the result of the previous step. Specif-
ically, foldr f e (a:xs) depends solely on a and foldr f e xs, without considering substructures smaller than
xs. In contrast, many DP problems involve memorization techniques that retain results from several previous steps.
For instance, the Fibonacci sequence DP recursion f (n) = f (n− 1) + f (n− 2), which depends on previous step
f (n− 1) and previous two step f (n− 2).

Third, the current definition of SDP does not accommodate search strategies commonly used in the BnB method,
such as depth-first or best-first strategies.

Nevertheless, these “missing parts” in the ordinary SDP defined by foldr operator can be incorporated by
introducing the datatype-generic abstraction of SDP, known as catamorphism, along with its extensions. Catamor-
phisms allow programmers to write statically-checkable generic shape-dependent programs that exploit the inherent
structure of input data. In this generic recursive program, recursive datatypes are modeled by polynomial func-
tors. This enables us to feed the program with arbitrary recursive datatypes defined by polynomial functors, and
the structure of the recursion will be automatically determined by the structure of these datatypes. For instance,
although natural number N and lists are different datatypes, they share a similar structure: all natural numbers
are successors of zero, and all lists can be constructed by inductively appending new values to an empty list. In
fact, both can be defined inductively through polynomial functors.

Furthermore, in Section II.2.7, we will show that different search strategies used in the BnB method can be
derived from the specification of catamorphisms. This provides formal proof of why different search strategies that
used in BnB algorithm are exhaustive, a fact that is usually demonstrated through weak assertions or informal
explanations in the studies of BnB algorithms.

I.2.2 Combinatorial optimization algorithm design through a modern lens
In this section, we provide a high-level overview of combinatorial optimization algorithm design. The goal is to offer
a brief explanation of how these methods are generally perceived within the community, while presenting a concise
summary of key results from our framework before going to more rigorous details.

The discussion here is divided into four Subsections. In the first Subsection, we present a detailed summary of
how these CO methods are commonly understood. In the second Subsection, we summarize the key components
of designing efficient CO algorithms, with efficiency being our sole concern. In the third Subsection, we summarize
how these different CO methods are related to each other in terms of their inclusion relations. Finally, we examine
the rod-cutting problem, a well-known problem solvable via DP methods. We demonstrate how the well-known DP
algorithm for this problem can be derived from scratch, with the underlying design principles formally discussed in
Chapter II.2 of Part II.

I.2.2.1 An overview of classical combinatorial optimization methods

Classical algorithm design textbooks are often written in a style like a “zoo” of algorithms. Algorithms with similar
features, such as greedy or DP methods, are typically grouped into the same category. However, these categories
are frequently defined ambiguously, leading to inconsistent classifications across different literature. Also, the
correctness of these algorithms is often explained informally, making it challenging to understand how to design
such algorithms from scratch and why they are correct.

3An infix notation for a binary function f apply its argument on the left and right side of the equation

14

Greedy method Greedy method are widely used in many different COPs. As the name “greedy” suggests, the
greedy strategy always makes the choice that looks best at the moment. That is, it makes a locally optimal choice
in the hope that this choice will lead to a globally optimal solution. However greedy method do not always yield
optimal solutions, but for problems that satisfy the greedy condition, greedy algorithms always yield exact solutions.
It is known that the greedy condition can be characterized as a matroid (a collection of independent subsets that
satisfies some axioms) [Schrijver et al., 2003]. However, in practice, identifying whether a matroid exists in a
problem is almost as challenging as determining whether the greedy condition is satisfied. In Section II.2.6, we will
identify the greedy condition from a different perspective, which is much easier to recognize in practice compared
to finding a matroid. In short, a COP specified as (3) can be solved greedily if the selector selE can be fused into
the generator gen.

Dynamic programming Dynamic programming (DP) is perhaps the most well-known problem-solving strat-
egy for both mathematical optimization and algorithm design. It was first developed by Bellman [1954] in 1954.
Interestingly, the name “dynamic programming” was chosen not for its descriptive accuracy but for its perceived
impressiveness. Bellman aimed to protect his work from the US Secretary of Defense Charles Wilson who was
known for his hostility to mathematical research [Bellman, 1984].

The applications of DP have been found in numerous fields. Classical DP algorithms like sequence alignment,
the Floyd–Warshall algorithm, and the matrix chain algorithm, among others, have revolutionized many fields in
scientific research, spanning from engineering to biology. The wide-ranging influence of DP across various fields has
led to numerous misconceptions about the essence of DP. Many believe they understand dynamic programming,
yet their definitions often differ significantly. This ambiguity originates from Bellman’s initial description of DP,
which was notably vague. The “archetype” dynamic programming approach described in Bellman [1954]’s original
paper was proposed to find the optimal policy for a discrete decision process problem, and the main character for
constructing DP is to identify the principle of optimality. Below is Bellman [1954]’s definition of the principle of
optimality.

Principle of optimality: An optimal policy has the property that whatever the initial state and initial
decisions are, the remaining decisions must constitute an optimal policy with regard to the state resulting
from the first decisions.

In this definition, several Terminology, such as “policy”, “decisions”, and “initial states” are not rigorously defined.
Unitil 1967, Karp and Held [1967] presented the first rigorous definition of DP. In their discussion, DP was formally
characterized as a sequential decision process combined with the principle of optimality. A policy is a sequence of
decisions, Karp and Held [1967] demonstrated that the optimal policy can be found by identifying a monotonicity
property, which provides a more rigorous characterization of Bellman’s principle of optimality.

Until today, it is widely accepted that an efficient recursive program incorporated with the principle of optimality
is insufficient to become a DP algorithm The essential criteria for identifying a dynamic programming algorithm
include ensuring both the principle of optimality and the use of memoization techniques in an efficient recursive
program.

However, debates persist regarding whether memoization should be considered the defining characteristic of
dynamic programming algorithms. In Karp and Held [1967]’s definition, the cost function in sequential decision
process (SDP) is characterized as a step-by-step recursive formula, it is a recursion that has access only to the
previous step. In other words, the use of memoization is not amenable in this recursive definition. In 1995,
De Moor [1995] provided a more elegant and concise definition of SDP as the fold operator, as defined above.

At the same time, there are some widely known DP algorithms that do not require memoization at all, for
instance, the well-known Viterbi decoding algorithm, Dijkstra’s algorithm, and the Bellman-Ford algorithm4 are
widely accepted as the DP algorithms, but there is no memorization technique involved.

Another contentious point that often sparks debate and confusion is the difference between DP algorithms
and greedy algorithms. A notable example of this ongoing debate revolves around Dijkstra’s algorithm, which is
well-known for solving the shortest path problem. For many years, researchers have disputed whether Dijkstra’s
algorithm should be classified as a greedy algorithm or a DP algorithm The essence of DP was first rigorously
outlined by Karp and Held [1967], in their work, Dijkstra’s algorithm is considered the prototype DP algorithm for
illustration. However, in one of the most popular textbooks on algorithm design by Cormen et al. [2022], which has
more than 67000 citations, Dijkstra’s algorithm is categorized as a greedy algorithm. They justify this classification

4For Bellman–Ford algorithm has a recursion Dr
G = Dr−1

G ×DG. Some researchers might think that the distance matrix DG between
vertices is memoized and reused in later recursions. However, if we consider matrix multiplication as a fixed operation, then this
recursion indeed depends solely on the results from the previous recursive step.

15

by noting that “Dijkstra’s algorithm always chooses the “lightest” or “closest” vertex in V − S to add to set S, we
say that it uses a greedy strategy.” Later, Huang [2008] asserted that Dijkstra’s algorithm is a DP algorithm again.
Despite these arguments, the community has not reached a consistent agreement on this matter, and the debate
has persisted for almost a century.

Divide-and-conquer In the divide-and-conquer (D&C) method, the main problem is split into two equal-sized
sub-problems, and then sub-problems are subdivide recursively until the sub-problems are small enough (base cases),
that they are solved directly. Then the solutions to the sub-problems are combined to produce the solution to the
original problem. The D&C method is very powerful in practice, for many settings in which divide and conquer is
applied, the natural brute-force algorithm may already be polynomial time, and the divide and conquer strategy is
serving to reduce the running time to a lower polynomial.

In the later Subsection II.2.4.3, we will provide an alternative definition for the D&C method, instead of splitting
the problem into two equal halves, we consider all possible subdivisions of a problem. This approach allows us to
relate to perhaps the most general abstraction of recursive programs—hylomorphisms. By doing so, we can clearly
see how the classical D&C method (binary split) can be characterized as a special case. Indeed, almost all practical
recursive algorithms can be characterized as special cases of hylomorphisms.

Branch-and-bound The Branch-and-Bound (BnB) method is one of the most widely used approaches for solving
intractable COPs. This method relies on the principle of decomposing a complex problem into smaller subproblems
through branching rules, analogous to decision processes in SDP. The BnB method systematically explores all
possible solutions to identify the optimal one while avoiding exhaustive enumeration by pruning suboptimal solutions
early. Suboptimal solutions are identified using bounding techniques, which involve estimating a lower bound and
an upper bound for each subproblem. If the lower bound for a subproblem is worse than the current best solution,
the corresponding solution can be discarded as suboptimal. Another essential aspect of the BnB method is the
choice of search strategy. Common strategies include breadth-first, depth-first, and best-first search. The efficiency
of the algorithm can be significantly influenced by the choice of search strategy, affecting both the time at which
the optimal solution is found and the number of subproblems that need to be evaluated.

Given this definition, an astute reader might notice that the definition of the BnB method bears a resemblance
to the definition of SDP. Indeed, the four main components of the BnB method—branching rules, pruning, bounding
techniques, and search strategies—each have counterparts in SDP. While search strategies in SDP have not yet been
discussed, we will address them in Section II.2.7, where we will explain how different search strategies can be derived
from the original definition of SDP.

However, unlike SDP, which is characterized by a datatype-generic abstraction—catamorphism, the BnB method
lacks a similar generalization. This is primarily due to the fact that the BnB method has not been rigorously
defined. The term “branch-and-bound” is often misapplied across various contexts. Researchers frequently label
their algorithms as the BnB whenever they involve any form of branching rule. This misapplication leads to
the misconception that the BnB method is exceedingly general. Moreover, some literature also classified many
DP algorithms as special cases of the BnB method [Ibaraki, 1977]. However, understanding the loosely defined
principles given in BnB studies will not help us understand how to design DP algorithms.

Due to the high degree of similarity between the BnB method and SDP, we propose considering SDP as pro-
viding a rigorous definition for branch-and-bound (BnB) methods. This perspective allows us to abstract the BnB
method within a formal setting and generalize its principles by studying the higher-level abstraction of SDP, i.e.,
catamorphism. This approach is essential for the study of BnB algorithms, especially since many existing studies
on BnB algorithms rely on weak assertions or informal explanations that do not withstand close scrutiny [Fokkinga,
1991]. Consequently, examining BnB algorithms within an elegant and rigorous algebraic framework will enable us
to derive these algorithms in a provably correct and systematic manner. A detailed discussion of the BnB method
will be presented in Section II.2.7.

I.2.2.2 Summary of key components in designing efficient combinatorial algorithms

This section provides a summary of the key factors in designing efficient and exact combinatorial algorithms. Here,
we aim to provide a brief overview of the key components that affect program efficiency. These techniques and
principles will be rigorously discussed in Part II.

1. Identify combinatorics through geometry. For most machine learning problems, it is possible to define
the problem using combinatorial variables because the data is finite. However, the most straightforward
combinatorial variables often involve a very large combinatorial search space S. Identifying the intrinsic

16

combinatorial structure of the problem through geometric insights can significantly reduce the problem’s
complexity. In Chapter II.3, we analyze the combinatorial structures of several commonly used machine
learning models, such as linear (hyperplane) models, polynomial hypersurface models, and Voronoi diagrams.
Additionally, we establish several theorems for enumerating these geometric objects with respect to a dataset
D.

2. Efficient factorization. After identifying the combinatorics of the problem, an efficient combinatorial
generator can be determined if we can find an efficient factorization with respect to the problem’s combinatorial
structure. Often, the efficient generator for the underlying problem is already known; in such cases, we can
utilize the existing generator or construct a more complex generator by combining basic ones.

3. Fusion. Once we have an efficient generator, an exhaustive search algorithm can be immediately constructed
by applying (3). However, the computation involved can be greatly reduced by reordering the computations.
Fusion is a special case of computation reordering. In many applications, we can integrate the filtering or
selection process within the generator. By doing this, we can achieve greater efficiency because most partial
configurations can be eliminated without being fully generated. We will present various fusion theorems in
Chapter II.2. Efficient CO algorithms can hence be derived by verifying the conditions of these theorems.

4. Dominance relation. The dominance relation, often employed through various upper and lower bound
techniques in BnB studies, is based on the concept that some partial configurations will never surpass others in
terms of optimality. These suboptimal configurations can be discarded before being fully generated. Ingenious
dominance relations are often highly specific to particular problems. An appropriate dominance relation for
a problem can significantly impact program efficiency, and multiple dominance relations can be combined to
form a more powerful one. We have identified two generic dominance relations, called global upper bound and
finite dominance relation, which are ubiquitous in combinatorial machine learning problems. A more detailed
discussion on dominance relations will be presented in Subsection II.2.6.3.

5. Thinning. Thinning is a (relational or functional) program used to delete provably suboptimal configurations
and is parameterized by the dominance relations. It is roughly equivalent to what many other authors refer to
as a dominance relation. For many dominance relations, suboptimal configurations are identified by comparing
them with other partial configurations. A naive implementation of the thinning approach involves comparing
every pair of configurations, resulting in quadratic time complexity. This task is non-trivial, as the number of
configurations in each recursive generation step can be polynomial or exponential relative to the input size.
An ideal thinning function should scan the current partial configurations in linear time. We implemented four
different thinning functions in Section II.2.6.

6. Generation ordering. There are two types of ordering related to generation. The first is extending ordering:
the extending ordering is also known as search strategy in BnB studies, for a list of configurations, extending
ordering determines the sequence in which configurations are extended. Well-known examples are depth-fisrt
search and breadth-first search strategies. The second is arrangement ordering: in SDPs, there are multiple
decision functions applied to each configuration. The order in which these decision functions are applied
determines the arrangement of configurations in the subsequent recursive steps. This is important because, in
real-world applications, some configurations may be more important than others, making it more profitable
to test these configurations first. Additionally, a fixed arrangement ordering can help us save memory by
storing the rank number of each configuration instead of the configuration itself. Detailed discussion will be
presented in Section II.1.5 of Chapter II.1.

Our discussions here are solely on improving time efficiency. However, in solving intractable COPs, improving time
efficiency often comes at the cost of sacrificing memory. Thus, we frequently encounter a need for a certain trade-off
between time and space. A comprehensive discussion of this trade-off will be postponed to Chapter III.6 of Part
III.

I.2.2.3 Relationships between different combinatorial optimization methods

Although algorithm design methods, such as greedy, DP, D&C and BnB method, are often treated as distinct
approaches, they are closely related to each other. In our framework, these methods are related based on their
abstraction levels. We summarize their inclusion relationships as follows:

SDP ⊆ Greedy algorihtm ⊆ BnB ⊆ General SDP ⊆ DP ⊆ General D&C, (5)

17

{[l0]}n=0

n=1

n=2

n=3 {[l0,l1,l1,l1]} {[l0,l2,l1]} {[l0,l1,l2]}

{[l0,l1,l1]} {[l0,l2]}

{[l0,l1]}

{[l0,l3]}

Figure I.2.1: Rod-cutting problem generation tree. IIn this generation tree, the segments at each level depend on
the segments from all preceding levels. For example, the length-three segments (configurations at level n = 3) are
constructed using length-two, length-one, and empty segments. Configurations within the same level are grouped to
form larger segments of equal length.

where “SDP” refers to the basic sequential decision process as defined in Subsection I.2.1.4. “General SDP” and
“General D&C” refer to basic SDP and D&C augmented with various acceleration techniques, such as the thinning
process and alternative search strategies. The inclusion relations outlined in (5) is derived from the inclusion
relations of their abstractions. A more detailed exposition of this inclusion relation will be provided in Section
II.2.9 of Chapter II.2.

I.2.2.4 Example: deriving efficient dynamic programming algorithm from scratch

After introducing the key components in designing efficient algorithms, to give audiences some intuition about how to
design algorithms, we illustrate how to use our theory to construct a well-known dynamic programming algorithm
for the rod-cutting problem from scratch. The aim of this example is to provide intuition rather than formal
reasoning, emphasizing how the overall algorithm design process should be conducted within our framework, i.e.,
demonstrating that an efficient algorithm can be derived from an initially inefficient exhaustive search specification.

Example 1. Rod-cutting problem. The rod-cutting problem is a classical combinatorial optimization problem that
can be solved efficiently using a dynamic programming algorithm. Assume we have a rod of length N that we want
to cut into pieces. Pieces with different lengths are worth different amount of money. A piece of length i is denoted
as li, which is worth w (i) dollars. The goal is to maximize the total amounts of money obtained from cutting the
rod.

The combinatorics of this problem are related to a basic combinatorial structure called list partitioning or seg-
mentation, i.e., partitioning a list into disjoint segments. However, the number of possible non-empty segmentations
for a list of size N is 2N−1, hence the exhaustive search algorithm for the rod-cutting problem is undoubtedly inef-
ficient. Nevertheless, for the rod-cutting problem, we are only interested in the length of each segment. This fact
allows for an efficient combinatorial factorization of the rod-cutting problem.

To construct an efficient combinatorial generator, we can analyze small cases first, and the general case can be
derived inductively. Consider all possible rod pieces for a rod of length three. Define Sn be all possible rod pieces
of a length n rod. The all possible rod pieces for length three rod consist of

S3 = {[l0, l1, l1, l1] , [l0, l1, l2] , [l0, l2, l1] , [l0, l3]} , (6)

18

we then establish the following equivalence relations

S3 = {[l0, l1, l1, l1] , [l0, l1, l2] , [l0, l2, l1] , [l0, l3]}
= {{[l0, l1, l1, l1]} ∪ {[l0, l1, l2]} ∪ {[l0, l1, l2]} ∪ {[l0, l3]}}
= {{[l0, l1, l1]} ◦ {[l1]} ∪ {[l0, l2]} ◦ {[l1]} ∪ {[l0, l1]} ◦ {[l2]} ∪ {[l0]} ◦ {[l3]}}
=⇒ ◦ distributed over ∪
= {{[l0, l1, l1] , [l0, l2]} ◦ {[l1]} ∪ {[l0, l1]} ◦ {[l2]} ∪ {[l0]} ◦ {[l3]}}
=⇒ definiteion of Sn

= S2 ◦ {[l1]} ∪ S1 ◦ {[l2]} ∪ S0 ◦ {[l3]} ,

(7)

where ∪ is the set join operator and ◦ is the Cartesian product of two sets, defined by concatenating each element
in the first set with each element in another set, for instance, {[a] , [b]} ◦ {[c] , [d]} = {[a, c] , [a, d] , [b, c] , [b, d]}. The
◦ operator has a higher precedence than ∪. The generation tree for S3 is depicted in Fig. I.2.1.

The derivation in (7) follows the following logic. The segments of size n can be constructed from all possible
segments with sizes smaller than n. Segments at the same level in Fig. I.2.1 are grouped together and joined with
the same segments to construct larger segments in the next generation step. This grouping is possible because of
the distributivity in semiring ({[X]} ,∪, ◦, ∅, {[]}), known as generator semiring, where symbol X represents a type
variable. The segments at the same level share the same length, and these segments will still be the same after
appending the same new segments. For instance, the segments of length 2 {[l0, l1, l1] , [l0, l2]} are grouped together
by joining {[l1]} once, without need to join {[l1]} separately to {[l0, l1, l1] , [l0, l2]}, because all segments of size two
can only join segments of size one to construct segments of size three.

Analogue to the above derivation, we can derive the following recursion inductively

Sn =
⋃

1≤i≤n

Sn−i ◦ {[li]} , (8)

this factorization is a consequence of the principle of optimality, which explores the distributivity between ◦ and ∪
operators.

If we replace semiring ({[X]} ,∪, ◦, ∅, {[]}) with (R,max,+,−∞, 0) in recursion (7), we have following recursion

Pn = max
1≤i≤n

Pn−i + w (li) , (9)

where Pn = max (W (Sn)) is the maximal profit over all possible rod pieces of length n, and W (Sn) evaluate the
profit of each configuration in Sn. The recursion (9) is the well-known DP algorithm for the rod-cutting problem.
To derive (9) we need to use the following distributivity

max {w (li) + w (s) | ∀s ∈ Sn−i} = w (li) + max {w (s) | ∀s ∈ Sn−i} . (10)

This approach is also known as semiring fusion. Indeed, Little et al. [2024] have shown that we can freely swap
any semirings if we have a recursion has type information similar to 8, this is a consequence of Wadler [1989]’s free
theorem. Little et al. [2024]’s result is based on the distributivity of semiring, in Section II.2.5.5 in Chapter II.2, we
will see how the distributivity can be generalized to monotonicity by using relational algebra [Bird and De Moor,
1996]. However, both monotonicity and distributivity are sufficient conditions for proving the fusion, they are
not necessary in certain special cases (see exercise 1.17 and exercise 7.6 and in [Bird and Gibbons, 2020]).

I.2.3 Structured recursion schemes
This thesis is focused on designing recursive optimization algorithms. Recursions are well-studied in the functional
programming community, particularly in the study of structured recursion schemes. Given the relevance of this
field to our work, this section provides a brief introduction to the key concepts of structured recursion schemes and
summarizes its development history. This will help readers gain a better understanding and appreciation of the
abstract concepts introduced in Chapter II.2 of Part II.

19

I.2.3.1 What is recursion

In the computer science community, the word “recursion” is usually referred to as a function or a process that is
defined by itself. The Fibonacci sequence is a well-known recursion defined as

f (0) = 1

f (1) = 1

f (n) = f (n− 1) + f (n− 2) .

(11)

Recursions are also used for definitions, many mathematical objects are formally defined by recursive rules.
For example, the natural numbers are defined as follows: Zero is defined as a singleton natural number, and the
successor of any natural number is also a natural number. The singleton natural number Zero serves as the seed
for generating all other natural numbers.

Recursions can be classified in various ways. One common classification in computer science divides recursions
into two categories—structured recursion and generative recursion—based on how the recursive procedure processes
the data. Their definitions will be explained next.

I.2.3.2 Structured recursion and generative recursion

Structured recursion In structured recursion, the recursive call is made using a substructure of the input
or the subsets or the input data. The Fibonacci sequence recursion (11) above is an example of the structured
recursion. The structured recursions includes almost all recursion with tree structure, binary tree search or creation
are examples. Similarly, all algorithms based on SDP are structured recursion as well.

Structured recursions process progressively smaller portions of the input data until reaching the base cases,
ensuring a termination guarantee. Consequently, structured recursions have been extensively studied in optimization
problems, as guaranteeing termination is essential to prevent optimization programs from running indefinitely.

Generative recursion Generative recursion, in contrast, do not necessarily feed smaller inputs to their recursive
calls. Instead, generative recursion creates an entirely new set of data from the given input. Consequently, proving
the termination of generative recursions is often non-trivial. Examples of generative recursions include the Newton-
Raphson method and the Euclidean algorithm (for calculating the greatest common divisor, GCD).

For two integer a and b, and a > b, the GCD can be calculated using the following recursion:

GCD (b, 0) = b

GCD (a, b) = GCD (b, r) ,
(12)

where r = a mod b is the remainder of a divide b. In this recursion, the remainder r is not the substructure of a or
b, which is generated from them.

I.2.3.3 Development history of constructive algorithmics

In the studies of recursive functions and recursive optimization algorithms, many results looked alike, but they
could not be expressed as a single theorem. Over forty years ago, Hoare [1972] first observed that there are certain
close analogies between the methods used for structuring data and the methods for structuring a program which
processes that data.

The Bird-Meertens Formalism Following the pioneering work of Meertens [1986] and Bird [1987, 1989], they
form a new programming formalism for structuring data and the method for processing these data. This formalism is
the calculus built around recursive/corecursive datatypes and homomorphisms on those datatypes. These datatypes
are typically various forms of trees or datatypes similar to trees (for example, nature number Nat, finite list List,
binary trees Btree, etc.), and the homomorphisms on trees are often called fold operators. The advantage of deriving
programs by using the fold operator is that we can use the initiality to prove the equality of the program rather
than tedious induction. It is later known as constructive algorithmics, the Bird-Meertens formalism, or Squiggle
formalism, due to its lavish use of squiggly notation.

20

Initial algebras, recursive datatypes and catamorphisms Datatypes such as Nat, List, and Btree look
very similar, and their homomorphism has the same recursive structures. It is reasonable to consider using abstract
language to generalize all these datatypes. In 1990, with the help of category theory, Malcolm [1990] found that these
datatypes can be modeled by the initial algebra in the category of F-algebras. This allows us to construct datatypes
systematically, these datatypes modeled by initial algebras are called recursive (inductive) datatypes. Dually, the
datatypes modeled by terminal coalgebras are called corecursive (coinductive) datatypes (conatural numbers, colists,
streams, etc.) [Fokkinga, 1992].

The homomorphisms between the initial F-algebra and F-algebras are called catamorphisms, it is named by
Meertens [1988]. The initial algebras are the abstraction of recursive datatypes, hence the catamorphisms are the
abstraction of the homomorphisms of different datatypes, in other words, catamorphisms are the abstraction of
fold operator. Indeed, the categorical concepts of F-algebras, F-algebra homomorphisms are generalizations of the
corresponding concepts in universal algebra [Wechler, 2012]. These concepts will be explained in more detail in
Section II.2.2.

The algebra of programming Subsequently, De Moor [1994], Bird and De Moor [1996] generalize the Bird-
Meertens formalism to relations, specifications are viewed as input–output relations (non-deterministic functions)
instead of total functions. This is later known as the algebra of programming.

We are very familiar with the algebra of numbers, and we know how to manipulate numbers using algebraic
rules. Similarly, the algebra of programs is similar to the algebra of numbers: we begin with the specification of
a class of problems and apply certain algebraic rules (theorems) to reason about programs. The solution to the
problem is obtained by verifying the conditions of these rules. This solution may take the form of a function, but
more commonly, it is a relation characterized by a recursive program. A relational and recursive program can then
be refined into a recursive program which is defined as a function.

Generalizing total functions to relations is an inevitable step in program derivation. De Moor [1994] provides
two reasons for extending a total function framework to a relational one. First, pure functional programs are
inadequate for optimization problems, as many such problems have non-unique solutions. Second, non-deterministic
programs are beneficial in program derivation because not all functions have inverses, whereas every relation has a
converse. Furthermore, the specifications of many problems can be more naturally expressed in terms of relations.
We will provide a detailed discussion on the motivation for using a relational formalism instead of a functional one
in Subsection II.2.5.1.

Structured recursive scheme - a zoo of recursive morphisms In the functional programming community,
the relationship between data structure and program structure is often expressed through structured recursion
schemes, which are widely used in functional languages such as Haskell. Structured recursions are often characterized
by a variety of morphisms, which are programs operating over recursive (inductive) or co-recursive (co-inductive)
datatypes. These morphisms combine to form structured recursion schemes. The simplest form of structured
recursion, or SDPs, is characterized by catamorphisms.

Catamorphism is the primitive recursive morphism that corresponds to the sequential decomposition of a prob-
lem. However, due to the limited expressiveness of the fold operator (catamorphism), many interesting and useful
generalizations have been proposed, resulting in a diverse collection of recursive functions (morphisms) [Yang and
Wu, 2022]. For instance, paramorphism, on the other hand, models primitive recursion by allowing the recursive
body to access not only the results of recursive calls but also the substructures on which these calls are made.
Zygomorphism is a variation of catamorphism aided by an auxiliary function. Histomorphisms enable memoization
techniques in recursive programs, making contextual information available to the body of the recursion.

Of particular note is the hylomorphism, a special type of morphism that encapsulates the essence of divide-
and-conquer. A more formal characterization of this approach will be provided after we introduce coalgebra and
algebra in Subsection II.2.4.4. Hylomorphisms, as noted by Hu et al. [1996] are the foundation of almost all forms
of recursion, including both structured and generative recursion. Nearly all practical recursive functions can be
transformed into hylomorphisms.

Unifying structured recursive scheme The various generalizations of catamorphism can be perplexing to the
uninitiated, as many of these morphisms appear quite similar. Numerous research efforts have been made to further
generalize these recursive morphisms. The first attempt to unify them was the identification of recursion schemes
from comonads, as proposed by Uustalu et al. [2001]. Comonads capture the general concept of “evaluation in
context” [Milewski, 2018], allowing contextual information to be available for every recursive call. This pattern
subsumes paramorphisms, zygomorphisms, and histomorphisms.

21

Hinze et al. [2013] made another attempt at unification using adjunctions. Their approach stemmed from the
observation that every adjunction induces a comonad, and every comonad can be factored into adjoint functors.
This approach has proven to be well-founded, subsuming all morphisms in structured recursion schemes.

I.2.4 Category theory and Haskell
In this thesis, we use Haskell, a functional programming language, as the primary tool for illustration instead
of employing mathematical-style functions. Despite its relative rarity in machine learning research compared to
imperative languages like C++, Python, or MATLAB, it offers several notable advantages. Its strongly-typed
system helps eliminate side effects and ensures code correctness, while its support for functional composition and
currying results in more concise and readable code. Furthermore, functional programming languages are particularly
suitable for implementing categorical concepts, providing a natural and convenient framework for expressing and
exploring ideas from category theory. Additionally, Haskell’s strengths in handling recursion, a central theme in
our optimization strategies, make it a powerful and illustrative tool for our research.

I.2.4.1 Categories and functors

Of the branches of mathematics, category theory is one which perhaps fits the least comfortably in set-theoretic
foundations [Program, 2013]. Category theory is an abstraction about compositions and relations. This is particu-
larly useful, as one way to view programs is as compositions of functions. Hence category theory is a powerful tool
to model the programming languages. Category theory abstracts structure and pattern as “categories” and studies
the relation between different categories. A category is a collection of objects and morphisms between objects, and
morphisms can be composed to create new morphisms. The formal definition of category is defined as follows.

Definition 1. Category. A category C consists of

• A collection of objects usually denoted by uppercase letters X, Y , Z, ...

• A collection of morphisms usually denoted by lowercase letters f , g, h , ...

such that

• Each morphism has assigned two objects, called source and target, or domain and codomain. We denote the
source and target of the morphism f by s (f) and t (f), respectively. If the morphism f has source X and
target Y , we also write f : X → Y .

• Each object X has a distinguished morphism idX : X → X, called identity morphism.

• For each pair of morphisms f , g, such that t (f) = s (g) there exists a specified morphism f ◦ g, called the
composite morphism, such that s (g ◦ f) = s (f) and t (g ◦ f) = t (f). Or graphically

f : X → Y, g : Y → Z =⇒ g ◦ f : X → Z (13)

The compositions satisfy the following properties

• Unitality: for every morphism f : X → Y , the compositions f ◦ idX and id idY ◦ f are both equal to f .

• Associativity: for morphisms f : X → Y , g : Y → Z, h : Z →W , the compositions h◦ (g ◦ f) and id (h ◦ g)◦f
are equal.

Objects in category theory are abstract nebulous entities. All you can ever know about it is how it relates to other
objects—how it connects with them using arrows. If we want to single out a particular object in a category, we
can only do this by describing its pattern of relationships with other objects (and itself). This is known as Yoneda
Lemma—an object in a category is no more and no less than its web of relationships with all other objects.

The essence of the category theory is composition. In programming, composability plays a crucial role, we
compose pieces of code to create solutions to larger problems. It is self-evident that programming is closely related
to category theory. An example of a category is the fiction category Hask by considering the functional programming
language Haskell as a category. Haskell itself has types, functions, identities, and compositions. In the category
Hask, the objects correspond to types such as Int, Double or String, while the morphisms correspond to programs
or functions. The input and output types of these functions represent the domain and codomain of the morphism.

22

Two programs, f and g, are composable if and only if the output type of f matches the input type of g. A program
that consumes an Int should not be able to accept a String!

However, Haskell does not strictly satisfy the definition of a category. In particular, the same function can
have different implementations (code), which is not allowed in a true category. Despite this limitation, the analogy
remains useful for understanding the basic concepts of category theory.

Categories itself can be considered as objects in bigger categories, this is a 2-category, known as a category of
categories. The morphisms between categories are called functors.

Definition 2. Functor. A functor F : C → D consists of two constituents:

• For each object X of C, an object FX of D

• For each morphism X → Y of C, a morphism Ff : FX → FY of D

and the following functoriality axioms hold:

• Unitality : for every object X of C, F (idX) = idFX , where idX is the identity function for object X in category
C and idFX is the identity function for object FX in category D

• Compositionality: for every pair of composable morphisms f and g

X
f // Y

g // Z

in C we have F (f ◦ g) = Ff ◦ Fg. That is the following diagram commute

FY
Fg

""D
DD

DD
DD

D

FX

Ff
<<yyyyyyyy F(f◦g) // FZ

A functor between categories C and D must give an object of D for every object of C. This thinking leads us to
consider how to construct new objects from given ones. In the realm of programming, this is referred to as “type
constructors.” A type constructor is a model for a datatype or data structure. Functors are a special kind of type
constructor that operate on both types and functions: they map a type to a new type, and they also map a function
defined on that type to a corresponding function that operates on the associated data structure.

We will explore how category theory assists in constructing algebraic datatypes by using polynomial functors.
Further, the fundamental relationships between functors are known as natural transformations. Natural trans-
formations are highly useful for modeling polymorphic functions. Indeed, it has been proved that every natural
transformation is a polymorphic function [Wadler, 1989].

I.2.4.2 Universal constructions

In programming, certain objects are made special or characterized by how they relate to others. Indeed, there
is a common construction in category theory for defining objects in terms of its relationship (universal property),
called the universal construction. A universal property is interpreted as the fact that objects are uniquely (up to
isomorphism) specified by the way they interact with the rest of the category: for all objects A in C, there is a
unique morphism to it. For instance, in Haskell, the unit type () has the special property that for every other type
a (in Haskell, we use lower-case letter a to represent types), there is a unique function to it, namely \a -> ().
Moreover, up to isomorphism, the unit type is the only type with this property. We say that the unit type is defined
by its universal property.

In this subsection, we will introduce four fundamental universal constructions that are particularly important
in our exposition: terminal objects, initial objects, products, and coproducts. These universal constructions are
well-modeled in Haskell, and we will explore their implementations when they are used in Chapter II.2.

Initial object and terminal object The simplest universal constructions are initial objects and terminal objects.
The initial object is the object that has one and only one morphism going to any object in the category. Dually,
the terminal object is the object with one and only one morphism coming to it from any object in the category. We
normally use “0” to represent an initial object, and “1” to represent a terminal object.

The initial object is defined by its mapping out property. For instance, in a partially ordered set (poset) category,
an initial object 0 is the smallest element, because there is only one morphism from 0 → A for any A in the poset

23

category. Another example is the category of sets and functions, the initial object is the empty set. The definition
tells you that you can see this shape in every other object and in itself. This mapping out property will be very
useful in our later discussions, we will model the recursive datatypes in terms of initial objects.

Dually, the terminal object is defined by its mapping in property. For instance, in the poset category, a terminal
object 1 is the greatest element, because there is only one morphism from A → 1 in the poset category. In the
category of sets, the terminal object is a singleton.

Product and coproduct Given two sets X and Y , we can always construct their Cartesian product X×Y . This
is the set whose elements are pairs (x, y), where x ∈ X and y ∈ Y . Thinking categorically allows us to generalize
the Cartesian product of sets, we need to think in terms of relationships. Analogue to Cartesian product of sets, if
we want to define a function f : A → X × Y , we can define a pair of function fX : A → X and fY : A → Y , and
then define f (a) = (fX (a) , fY (a)). In other words, a morphism A → X × Y in a category of sets is the same as
a pair of morphisms A→ X and A→ Y , so a product in category theory is about a pair of relations (morphisms)
rather than the elements. The product in a category C is defined as follows.

Definition 3. Product. Let X and X be objects in a category C. A product of x and y consists of three things:
an object, denoted X × Y and two morphisms fst : X × Y → X and snd : X × Y → Y , with the following universal
property: For any other such three things, i.e. for any object A and morphisms f : A→ X and g : A→ Y , there is
a unique morphism h : A→ X × Y such that following diagram commutes

A
g

##G
GG

GG
GG

GG
f

{{ww
ww
ww
ww
w
h

��
X X × Y

fstoo snd // Y

Categorically, we will frequently denote h by h = 〈f, g〉.

Dually, we can define coproduct with the mapping-out property.

Definition 4. Coproduct. Let X and Y be objects in a category C. A product of x and y consists of three things:
an object, denoted X + Y and two morphisms inl : X → X + Y and inr : Y → X + Y , with the following universal
property: For any other such three things, i.e. for any object A and morphisms f : X → A and g : Y → A, there is
a unique morphism h : X + Y → A such that following diagram commutes

X

f
##G

GG
GG

GG
GG

inl // X + Y

h

��

Y

g
{{xx
xx
xx
xx
x

inroo

A

Categorically, we will frequently denote h by h = [f, g].

I.2.4.3 Introduction to Haskell

Types and values A type is a kind of label that every expression has. It tells us in which category of things that
expression fits. The expression True is a Boolean type Bool, 1 is an integer type Int, etc. We will use only simple
types, such as Booleans Bool, characters Char, strings String, numbers of various kinds (integers Int, double
floating points Double), and lists [a]. Most of the functions we use can be found in Haskell’s Standard Prelude
(the Prelude library), or in the library Data.List In Haskell, we use lower-case letters a, b, c to indicate type
variables. A function f : A → B is the same as the function f :: a -> b in Haskell. Throughout the thesis, we
will frequently employ this Haskell-style definition rather than the normal math-style. However, it is worth noting
that both type variables and value variables in function definitions are represented in lower-case letters, which could
potentially lead to confusion. For example, a function definition in Haskell might be represented as

f :: a -> b -> Bool
f a b = True

For the uninitiated reader, there is no need to be panic. Although both the type variables and value variables of
this function are denoted using lower-case letters, we can easily distinguish them. To clarify, everything following ::
are types or type variables, while variables directly applied to a function after white space represent value variables.

24

List and tuple List is a homogenous data structure. It stores several elements of the same type. In Haskell, lists
are denoted by square brackets, and the values in the lists are separated by commas. We can append an element
at the beginning of a list using : operator (also called the cons operator), or we can join two lists by using the ++
operator [a,b] ++ [c,d] = [a,b,c,d]. The length of a list is calculated by the function length :: [a] -> Int
which counts the number of elements in a list.

Tuples are similar to lists in that they store multiple values in a single entity. However, tuples are used when
you know exactly how many values you want to combine, and their type depends on both the number and types of
the components. Unlike lists, tuples do not require their components to be of the same type. In Haskell, tuples are
denoted with parentheses, and their components are separated by commas. For instance, we can store two elements,
a :: Int and b :: Bool with different types in a tuple (a,b) :: (Int, Bool). However, it is important to note
that you cannot store elements with different types in a Haskell list.

Algebraic datatypes, type synonyms, and type inference Haskell’s Prelude includes many built-in datatypes
such as, Bool, Int, Char, Maybe, etc. But how can you define your own datatypes? One way to do this is by using
the data keyword. For example, the built-in datatype Bool is defined as

data Bool = True | False

In this definition, the keyword data means that we are defining a new datatype. The part before the “=” specifies
the type, which in this case is Bool. The parts after the “=” are value constructors, which define the possible values
that this type can take. The | is read as or. So we can read this as the Bool type can have a value of True or
False. Both the type name and the value constructors have to be capitalized.

Datatypes can be parameterized, for instance, Maybe is a type constructor, it is not a type, it receives a type as
a parameter to construct a new type. It is defined as

data Maybe x = Nothing | Just x

where type x is the type variable, called the field of Maybe type constructor. when I say fields, I actually mean
parameters. In this case, the variable of this datatype can be any type, for instance, field x can be can be Int,
or String, corresponding to type Maybe Int, or Maybe String, we call the field with free variables the free field
denoted by variable x. In programming, Maybe x means a value of type x within the context of possible failure
attached. Another way to define datatype is to use newtype keyword, we will explain it in more detail when we use
it.

We can use data keyword to construct more sophisticated datatypes that are parameterized by more type
variables or constant type. For instance, we can define the datatype Either in Haskell as

data Either Int x = Left Int | Right x

where the first field of type constructor Either is fixed to Int, this field is then called a constant field or just
constant variables. If this constant field is unknown, we denoted it as a to distinguish the free field x.

Type synonyms do not really do anything, they are just about giving some types of different names so that they
make more sense to someone reading our code and documentation. In Haskell preclude, the String is a synonym
for a list of characters [Char]

type String = [Char]

Haskell has type a inference system, which means that if we write a number, we do not have to tell Haskell it
is a number. Haskell can infer any missing type information where possible, and then we do not have to explicitly
write out the types of our functions or expressions to get things right. Therefore, if the codomain of a function f
matches another function g’s domain, we can compose it without claiming their type.

Haskell pattern matching and map, take functions Pattern matching in Haskell is a syntactic construct, it
consists of specifying patterns to which some function should conform. When defining functions in Haskell, pattern
matching allows you to define separate function bodies for different patterns. This leads to really neat code that is
more readable. Here is an example to define a useful function called map by using pattern matching

map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (a:xs) = f a : map f xs

25

_ means that we do not care about the value of the first parameter of the map function. The map function receives
a function of type f :: a -> b and a list of type (a:xs) :: [a], then applies that function to every element in
the list, producing a list of type [b]. When you call function map, the definition patterns will be checked from top
to bottom, and when input conforms to a pattern, the corresponding function body will be used. So the order in
which you specify these patterns is important, it is always best to specify the most specific ones first and then the
more general ones later.

Curried functions and infix section In Haskell, every function officially takes only one parameter. Con-
sequently, it is not possible to define a function that takes multiple parameters in the way commonly done in
imperative languages, such as f(x,y). Instead, all functions in Haskell that appear to take several parameters are
actually curried functions.

To understand currying, consider the binary function + :: a -> a -> a. This is equivalent to
+ :: a -> (a -> a), meaning + takes an input of type a and returns a partial function of type a -> a. This
returned function then takes another input of type a and produces a result of type a. More specifically, the
expression + 1 2 first receives a value 1 and returns a function (+ 1), the function (+ 1) receives another value 2,
and returns the summation of 1 and 2.

Binary operators like + and ∗ are typically written in infix form as a+ b and a ∗ b in imperative programming
and mathematics. However, in Haskell, binary functions and other functions are usually written in prefix form, as
shown with the + function above. Haskell also allows binary functions to be written in infix form. For example,
you can use a `+` b, a `*` b, a `max` b to write binary functions infix. Any function in prefix form can also be
partially applied by using a section. To section a function, you surround it with parentheses and supply a parameter
on one side. For instance, (+ 1) creates a function that takes one parameter and adds 1 to it. Therefore, (+ 1) 2
is equivalent to + 1 2.

Point-free style in Haskell In point-wise style, we describe a function by describing its application and argu-
ments.

f :: Double -> Double -> Integer
f x y = round (signum (dist x y))

This function calculates the distance between two data points, takes the sign of the result, and rounds it to the
nearest integer.

On the other hand, in point-free style, a function is described solely in terms of function composition. It
is common in functional programming languages to define functions as compositions of other functions, without
explicitly mentioning their arguments. For example, we can define the function f using a point-free style.

f :: Double -> Double -> Integer
f x = round . signum . (dist x)

the function composition is . operator in Haskell. This programming style reduces the number of parentheses
needed, resulting in more readable code.

Fold functions In Subsection I.2.1.4, we defined the foldr function to illustrate SDP. This function, which is
already included in Haskell, recursively folds a list from right to left. Similarly, there is a recursive function that
folds a list from left to right, known as foldl. The foldl function (also called left-fold) can be defined recursively
as follows:

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f e [] = e
foldl f e (a:x) = foldl f (f e a) x

Similar to the definition of foldr, f is a binary function applied between the seed value e and the head of the list.
This application produces a new accumulator value, and the binary function is then called with this new value and
the next element in the list. The foldl function can be illustrated with the following example

foldl (+) e [x1,x2,..,xN] == ((e + x1) + x2) + .. + xN)

Another useful function called foldl1, which applies only to non-empty lists

foldl1 f (a:x) = foldl f a x

26

List comprehension In set theory, a set can be constructed from another set, this is known as set comprehension,
for instance, S = {2× x | x ∈ R, x ≤ 10}. List comprehension is similar, it is a way to construct a list from existing
lists. In Haskell, list comprehension is usually rendered as

[f x | x <- xs, f <- fs]

it produces a list of values of the form f x , the operator f is drawn from a list of functions fs and the element
x is drawn from a list xs. For instance, expression [f x | x <- [1,2,3], f <- [(+1),(+2)] produce a list
[2,3,4,3,4,5] .

Polymorphic functions Some functions operate on elements of different types, regardless of the specific shape
of the elements. These are known as polymorphic functions; “poly” means many or more than one. A good example
to illustrate this is the reverse function

reverse :: forall a. [a] -> [a]
reverse l = rev l []

where
rev [] a = a
rev (x:xs) a = rev xs (x:a)

In this type declaration, a is a type variable that can represent any type. The reverse function takes a list and
returns a new list with the elements in reverse order. For instance, reverse [1,2,3] = [3,2,1]. As previously
mentioned, every natural transformation is a polymorphic function.

Functors in Haskell In Haskell, functors are defined as endofunctors within the category Hask. Categorically,
a functor is a mapping between two categories it maps every object in category C to another category D. An
endofunctor is a special type of functor where the source and target categories are the same, i.e., F : C → C. Thus
a functor in Haskell is an endofunctor that maps objects in Hask to objects in Hask. Since objects in Haskell are
types, a functor on objects corresponds to a polymorphic function on types—a function with type F : X → FX.
In Haskell, this is represented as func :: x -> func x, and one example of such a function is the Maybe type
constructor.

Specifically, the functor on objects in Haskell corresponds to an algebraic datatype func x, which has exactly
one free field x and is constructed using the data keyword. Functors with two free parameters are called bifunctors;
however, the discussion of bifunctors is beyond the scope of this thesis.

Nevertheless, a functor is more than just a function on objects—it also involves the objects and the morphisms
connecting them. A functor maps morphisms from the domain category to morphisms in the codomain category,
preserving the structure of connections. Therefore, if a morphism f : A → B in domain category connects object
A and B, the functor F maps function f to a function Ff : FA → FB in the codomain category connects FA and
FB. In Haskell, we define the morphisms part of the functor as

class Functor func where
fmap :: (a -> b) -> func a -> func b

where class keyword defines the typeclass in Haskell, which is not a class of types but rather a class of type
constructors. For different datatypes, we need to define their fmap implementation separately . We can implement
the functor instance for the Maybe datatype as follows

fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

the definition of fmap for Maybe is very simple. If we map a value Nothing, then simply return Nothing. If the
value is Just x, where x is some value, then fmap applies the function f to the contents of Just x.

Defining fmap for each new datatype can be tedious. Fortunately, we can use the deriving keywords to
automatically generate the functor behavior of datatypes within the functor class class Functor. This allows the
definition of fmap for a particular datatype to be generated automatically. For example, the fmap for the Maybe
datatype can be automatically derived by defining

data Maybe x = Nothing | Just x deriving Functor

27

I.3 An overview of the thesis
This section outlines the structure of the research, the questions addressed, and the main results of the thesis. The
research is organized into two main parts, Part II theories and Part III applications.

I.3.1 General theory – Principles for designing efficient combinatorial optimization
algorithms

Part II explores three interrelated themes: combinatorial generation, constructive algorithms, and geometry in
machine learning.

Constructing efficient exhaustive search algorithms – Combinatorial generation

As discussed, designing an efficient CO algorithm hinges on developing effective brute-force algorithms,
and the efficient brute-force algorithms for most basic combinatorial structures are already known. In
Chapter II.1, we present various efficient generators based on SDP. Additionally, the abstract combi-
natorial generators in terms of different datatypes are illustrated in Section II.2.3, and these generators
will be examined in a more structured and elegant way in this section. Our goal is to provide a com-
prehensive library of generators for various combinatorial structures, which can be used directly when
designing algorithms.

Algorithm design principles – Constructive algorithmics

This chapter introduces the core theory of the thesis. The Terminology introduced in Section I.2.2 and
Section I.2.1 will be explained more formally. There are several focuses in this Chapter, the first part
focuses on the datatype-generic abstraction of SDPs—catamorphisms, and includes a systematic study of
how to construct catamorphism-based combinatorial generators. A significant portion of the remaining
exposition in this chapter will introduce the theory of the algebra of programming [Bird and De Moor,
1996]. This theory, a relational calculus formalism for programs, will be explored with a particular
focus on its application to the context of this thesis—combinatorial optimization. This formalism offers
a systematic approach to deriving efficient programs from provably correct specifications, providing us
with simple, elegant derivation steps. We will see in our applications that the algorithms designed using
this formalism are concise and readily comprehensible.

Combinatorail geometry – Geometric algorithms and combinatorial essences of ML models

In the final theme, Geometry, we highlight two key aspects: how geometric insights can simplify the com-
binatorial complexity of intractable problems, and how the algorithmic design principles we introduced
aid in solving fundamental problems in combinatorial geometry. We propose two novel cell enumeration
algorithms, along with a reformulation of the well-known reverse search algorithm [Avis and Fukuda,
1996]. Our proposed algorithms and the reformulated reverse search algorithm are optimally efficient
in terms of worst-case complexity and embarrassingly parallelizable. In contrast, the parallelization
method introduced by Avis and Fukuda [1996] requires a significant amount of communication between
processors.
Furthermore, we explore the geometric and combinatorial properties of two important geometric objects:
Voronoi diagrams and hyperplanes. Despite their simplicity, these objects are closely tied to many
machine learning models, as nearly all successful ML models can be represented as piecewise linear
functions. Understanding these properties is crucial for grasping the combinatorial essence of many
fundamental machine learning problems, which we will analyze in detail in the third part of this thesis.

I.3.2 Specialized theory – designing tractable algorithms for fundamental problems
in machine learning

Part III analyzes the combinatorial essence of four critical problems in machine learning: the classification prob-
lem (with linear or polynomial hypersurface decision boundaries), K-clustering problems (including K-means and
K-medoids), empirical risk minimization for feedforward neural networks (specifically with rectified linear unit

28

(ReLU) activation functions), and decision tree problems (with axis-parallel, hyperplane, and hypersurface decision
boundaries). Our analysis reveals that all these problems have polynomial combinatorial complexity.

Consequently, polynomial-time CO algorithms for these problems can be derived directly by combining the basic
combinatorial generators introduced in the general theory. Furthermore, we have also discussed specific acceleration
techniques applicable to each problem. The use of these techniques enables the construction of algorithms that are
provably faster than their worst-case complexity. In the best case, we can have nearly linear-time algorithms for
some of these problems.

Classification problem

In this chapter, we analyze the classical classification problem involving linear or polynomial hypersurface
decision boundaries, with a particular focus on the 0-1 loss objective function, which aims to minimize
the number of misclassified points. We will demonstrate that the combinatorial complexity of the
linear classifier is O

(
ND

)
. Two representations of the hyperplane will be examined, both of which

show that an algorithm with O
(
ND+1

)
time complexity can be constructed to solve this problem.

For polynomial hypersurface decision boundaries, the algorithm has a complexity of O
(
NG+1

)
, where

G =

(
D +W
D

)
− 1, and W is the degree of the polynomial used to define the hypersurface.

Empirical risk minimization for feedforward neural networks with rectified linear unite

In this chapter, we present the first algorithm for obtaining the Empirical Risk Minimization (ERM)
solution for 2-layer ReLU networks. The proposed algorithm has a worst-case complexity of O

(
NDK

)
,

where K denotes the number of hidden nodes. Results from complexity theory indicate that this
approach is optimal in terms of worst-case complexity. To extend the network with additional hidden
layers, a greedy training approach can be employed.

Decision tree problems

We propose a unified algorithmic process for solving decision tree problems that can handle axis-parallel
splits, hyperplane splits, and polynomial hypersurface splits. The worst-case complexity of the proposed
algorithms is as follows: for axis-parallel decision trees, the complexity is O

(
(ND)

K
)

, for hyperplane
splits, it is O

(
NKD

)
, and for polynomial hypersurface splits, it is O

(
NKG

)
.

K-clustering problems

In this Chapter, we present two algorithms for solving the K-means and K-medoids problems separately
. The algorithm for solving the K-means problem has a worst-case time complexity of O

(
NK+(K−1)D

)
,

where K is the number of clusters and D is the dimension of feature space. The K-medoids algorithm
has a worst-case complexity of O

(
NK+1

)
. Additionally, we propose a specialized algorithm for solving

the 2-means problem, which achieves a reduced complexity of O
(
ND+1

)
.

I.3.3 End-to-end implementation in Haskell
In the final section, we present two example problems: the 0-1 loss linear classification problem and the K-medoids
problem. We provide comprehensive implementations in Haskell, along with detailed experiments. These examples
encompass most of the techniques introduced in general theory.

29

I.4 Contributions
Contributions in general theory In the first theme, combinatorial generation, we provide a comprehensive
summary of efficient combinatorial generators for a wide range of fundamental combinatorial structures and make
progress in designing a new class of generator, called the integer sequential decision process generator, by integrating
the strengths of generators in different classes. These generators will form a comprehensive library, applicable
directly to solving optimization problems.

In the second theme, We extend Bird’s results by incorporating the backtracking technique, thereby integrating
the well-known branch-and-bound method into our framework, which allows us to present a unified framework
for designing greedy, dynamic programming, divide-and-conquer, and branch-and-bound algorithms. In addition
to reformulating the combinatorial generators introduced in the first theme using a datatype-generic approach, we
introduces two new generators, kcombs and kperms based on join-list datatype, for enumerating K-combinations and
K-permutations, both of which are embarrassingly parallelizable. Alongside this, we establish systematic principles
for designing catamorphism generators, demonstrating how these SDP generators can serve as foundational “atoms”
for constructing more complex “compounds”.

In the last theme, combinatorial geometry, we demonstrate two key aspects: how geometric insights can simplify
the combinatorial complexity of many intractable COPs, and how the algorithmic design principles we introduced
assist in solving fundamental geometric problems. We have made several significant contributions in this section,
one of the most important being the introduction of novel algorithms for enumerating the cells of a hyperplane
arrangement—a fundamental problem in combinatorial geometry. Our algorithms are both optimally efficient
and embarrassingly parallelizable. Furthermore, we explore the geometric and combinatorial properties of two
important geometric objects: Voronoi diagrams and hyperplanes. These properties are essential for understanding
the combinatorial essence of many fundamental machine learning problems, which we will examine in detail in the
third part of this thesis.

Contributions in specialized theory The specialized theory section of this thesis addresses four fundamental
problems in machine learning: classification, clustering, decision tree, and empirical risk minimization for ReLU
neural network. Exact solutions for all these problems are known to be NP-hard. We provide a detailed analysis
of the combinatorial essence of these NP-hard problems, demonstrating that these problems can be solved in
polynomial time when certain parameters, such as dimensionality or number of branches, are fixed. To the best
of our knowledge, all algorithms we propose are the fastest available in terms of worst-case complexity, and their
performance can be further sped up through the acceleration techniques we introduce, thus improving their efficiency
beyond the worst-case complexity bounds.

30

Part II
General theory: Principles for designing efficient
combinatorial optimization algorithms
This part explains the core theoretical framework of this thesis. Our discussion focus on three interrelated themes:
combinatorial generation, constructive algorithms, and geometry in machine learning. These themes form the
foundation for the algorithm design principles discussed throughout the thesis.

In the first theme, Combinatorial generation, we focus on the development of efficient exhaustive search al-
gorithms. This section presents a range of advanced combinatorial generators based on sequential decision processes
(SDPs). These SDP-based generators will be further refined and presented in a more structured and abstract form
after we introduce the datatype-generic abstraction of SDPs in the following chapter. In addition to introducing
these SDP-based generators, we will explore the most common classes of combinatorial generation techniques in
the study of combinatorial generation [Kreher and Stinson, 1999, Ruskey, 2003]. Each class of generator serves
a distinct purpose and is tailored to specific optimization scenarios, making them uniquely suited to particular
contexts and not easily replaceable by others. Furthermore, we introduce a new class of generators called Integer
sequential decision process generators (I-SDPs), which integrate the strengths of existing generators. These new
generators offer a better balance in the time-space trade-off, enhancing the design of exact algorithms. The aim
of this theme is, therefore, to provide a comprehensive library of exhaustive search algorithms that can be directly
employed in the design of efficient combinatorial optimization algorithms.

The second theme, Constructive algorithmics, introduces the central theory of this thesis. Here, the SDP
introduced earlier is formalized as a datatype-generic program known as, catamorphism. We therefore reformulate
the generators defined over SDPs in a more structured manner using catamorphisms over cons-list and join-list
datatypes. At the same time, we provide a set of rules for constructing complex catamorphism generators from basic
ones, enabling the systematic design of more sophisticated generators for more complex combinatorial structures.
Furthermore, we also explore Bird and De Moor [1996]’s theory of the algebra of programming, with particular a focus
on combinatorial optimization. Bird and De Moor [1996]’s theory is a relational calculus formalism that enables
the derivation of efficient programs from provably correct, but initially inefficient, specifications. This formalism
not only streamlines the design of algorithms but also ensures that they are both concise and comprehensible,
underscoring the elegance and power of systematic algorithmic derivation.

Finally, the third theme, Combinatorial geometry, explores the combinatorial essence of many machine
learning models by identifying the equivalence classes through geometry. While efficient combinatorial generation
is critical, the inherent geometry of problems often introduces equivalence relations that can significantly reduce
the complexity of the search space. This chapter emphasizes the importance of understanding these geometric
relationships, particularly through the study of Voronoi diagrams and hyperplanes. These geometric objects, despite
their apparent simplicity, form the fundamental building blocks of many successful machine learning models, which
are often represented as piecewise linear functions.

Together, these themes provide a robust framework for understanding and advancing the design of algorithms at
the intersection of combinatorial optimization and machine learning, offering both theoretical insights and practical
tools for tackling complex problems in these fields.

31

II.1 Combinatorial generation
Developing a systematic approach to constructing efficient factorizations for various combinatorial structures is a
non-trivial task. Fortunately, efficient factorizations for many basic combinatorial structures, such as permutations,
sublists, list partitions, and multiclass assignments, already exist. This chapter focuses on presenting a comprehen-
sive discussion of three types of combinatorial generators: sequential decision process, lexicographical generation,
and combinatorial Gray codes (CGC). Each class of generator has unique advantages that make it suitable for
specific contexts. The aim of this chapter is to provide a library of generators that can be easily applied to solve
problems involving different combinatorics.

The SDP generators will be discussed in a more abstract manner in Section II.2.3 of Chapter II.2. Moreover,
We will see how these basic SDP generators can serve as the “atoms” for constructing more complex “compounds”
in Subsection II.2.3.4.

II.1.1 Containers/datatypes
Combinatorial structures are consists of by a sequence/set of elements. The containers to store these combinatorial
structures are called datatypes. For readers who are computer science background may very familiar with data
structures. Datatypes are abstraction of data structures, each datatypes can implemented using different kinds of
data structures. For instance, the datatype list can be implemented by an array, a single-linked list, and so forth.

Among the numerous datatypes, we are particularly interested in a class of datatypes, known as the Boom-
hierarchy family [Bunkenburg, 1994]. Datatypes within this family exhibit favorable algebraic properties. Notably,
algebraic theories based on sets, bags, and lists have been extensively developed in previous literature [Bird, 1989].
These three datatypes are especially significant for combinatorial generation.

In this section, we briefly introduce several datatypes that are prominently used in this thesis and explore their
algebraic properties. For a more formal and detailed discussion on algebraic datatypes, refer to Section II.2.2, where
each datatype is modeled categorically through polynomial functors.

Each datatype in the Boom-hierarchy family is the free algebra of its binary operator ∪, called “join”, and unit
∅ 5, called “empty.” Different datatypes are distinguished by the laws satisfied by their join operator ∪. The four
laws considered in the Boom-hierarchy family are

Unit: ∅ ∪ a = a = a ∪ ∅
Associativity: a ∪ (b ∪ c) = (a ∪ b) ∪ c

Commutativity: a ∪ b = b ∪ a
Idempotent: a ∪ a = a.

(14)

We can classify different datatypes by identifying the laws of its binary operator ∪ satisfied, there are four laws
in total, hence there are 24 number of datatypes in the Boom hierarchy family. Adding a law to an algebra can
be thought of as partitioning the carrier of the algebra into equivalence classes induced by that law and regarding
each class as one element [Bunkenburg, 1994]. For instance, set concatenation has commutativity, hence {1, 2} and
{2, 1} belong to the same equivalence classes.

Lists/sequences A (finite) list or sequence is an ordered collection of values of the same type which are called
the elements/items of the list. We shall use letters a, b, c, ..., at the beginning of the alphabet to denote elements
of lists, and letters x, y, z at the end of the alphabet to denote the lists themselves. On some occasions, we want
to describe a list of lists, which are denoted by compound symbols xs, ys, and zs.

The join operator ∪ for list is associative and has a unit but is not commutative, so we have x∪(y ∪ z) = (x ∪ y)∪z
and x ∪ ∅ = ∅ ∪ x = x, but x ∪ y 6= y ∪ x, for all lists x, y.

In many imperative programming languages, like Python or C++, lists can store values of different types. In
our research here, we do not allow a list to store values with different types. What this means is that we can have
lists of numbers, lists of characters, and even lists of functions, but we shall never mix two distinct types of values
in the same list. This can simplify the type information of a list. A list of integers will be considered as [Int], in
Haskell, it is [Int]. We use the symbol ∅ or [] to denote the empty list, in Haskell, an empty list is rendered as [].

5We overload the notation ∪ and ∅ to represent the concatenation operator and unit for all datatypes in the Boom hierarchy family
not just set.

32

Sets and bags By definition, a finite set is a collection of elements in which the order of the values is ignored
and there are no duplicate values in the list. Hence all laws in (14) are satisfied by the join operator of the finite
set datatype. We write the elements of a set in brace brackets and symbol ∅ or { } to denote the empty set. For
instance, set S = {1, 2} means set S contains values 1 and 2.

Similarly, bags are like sets without idempotent property or lists without ordering, and bags are sometimes called
multisets. Hence bags satisfy associativity, and commutativity and have a unit. We use *1, 1, 2, 3+ to represent a
bag with two 1, one 2 and one 3, and symbol ∅ or * + to denote the empty set. So we have x∪ (y ∪ z) = (x ∪ y)∪ z,
x ∪ ∅ = ∅ ∪ x = x and x ∪ y = y ∪ x, for all bags x, y.

Nested containers Containers can be nested, i.e., contained inside each other. For instance, xs = {[4, 2] , [] , [3, 6]}
is a set of lists, whereas, ys = [{4, 2} , { } , {3, 6}] is a list of sets. In xs, while the ordering in which the lists appear
in the set does not matter, there can be no duplicate lists, so {[4, 2] , [] , [3, 6]} = {[] , [4, 2] , [3, 6]}. Whereas, in ys,
the ordering in which the sets appear in the list matters and there can be duplicate sets, but the ordering of the ele-
ments in each of the lists does not matter. As examples, [{2, 4} , {} , {3, 6}] is the same as ys but [{ } , {2, 4} , {3, 6}]
is not.

II.1.2 Sequential decision process for basic combinatorial structures
The combinatorial generator based on the Sequential Decision Process (SDP) is the most common type of com-
binatorial generator. It is valued for its simplicity, generality, efficiency, and ease of abstraction. The simplicity
arises from its sequential decision nature, and nearly all SDP-based generators are optimally efficient in terms of
asymptotic complexity. Furthermore, SDPs can be generalized to offer a data-type generic abstraction, which will
be introduced in Chapter II.2. Due to these unique advantages and their significance in combinatorial optimization,
SDP generators will be our primary focus in the discussion on combinatorial generation.

II.1.2.1 Sequential decision process combinatorial generator in Haskell

We have defined the sequential decision process in Subsection I.2.1.4. When applying SDP to combinatorial gener-
ation, it is often the case that the combinatorial objects must satisfy certain constraints. Therefore, it is necessary
to incorporate a filtering process to exclude infeasible configurations. Thus, the SDP generator for combinatorial
generation can be defined as follows

sdp_gen p fs e = filter p . foldl (choice fs) e
where choice fs xs a = [f x a | x <- xs, f <- fs]

where the seed value e is the starting point of the recursion, and the choice function reflects the “decision” process
in SDP. In each recursive step of foldl function, we have the choice of applying any of the operators from a list
of decision functions fs6 to all partial configurations so far produced in xs. The filter function takes a predicate
function p :: a -> Bool (predicate function receives an argument and returns a Boolean value) and filter out all
configuration that do not satisfy the predicate.

When a filtering process is needed, directly use sdp_gen program is inefficient because the configurations returned
by foldl are usually exponential large. In some applications, we can sometimes fuse the filtering process inside the
foldl function, the fused SDP generator can be defined as

sdp_filtgen p fs e = foldl (choicefilt fs) e
where choicefilt fs xs a = filter p [f x a | x <- xs, f <- fs]

Indeed, the filter fusion is possible if and only if the predicate p is prefix-closed. We call a predicate p prefix-
closed if p (f x a) = q (f x a) && p x [De Moor, 1995], where the original predicate p with respect to updated
configuration f x a is true if and only if the new predicate q with respect to f x a is true and p with respect
to prefix x is also true. The prefix-closed condition is sometimes expressed as p (f x a) =⇒ p x (=⇒ denotes
logical implication) in literature [Bird, 1987]. In practice, calculating q (f a x) is often more efficient than directly
calculating p (f a x). For instance, the well-known eight queens problem has predicate p check no queen is attacked
by any other queens, whereas the predicate q check whether the newly added queen does not attack the others.

II.1.2.2 Sublists, sequence and K-sublists

6The decision function list can be either fixed or parameterized.

33

[]

[]

n=0

n=1

n=2

n=3

n=4

[]

[] [3][3,4] [2][4] [2,4]

[2]

[] [3] [2] [2,3] [1] [1,3] [1,2] [1,2,3]

[2,3][2,3,4] [1][1,4][1,3][1,3,4] [1,2][1,2,4] [1,2,3]

[1] [1,2]

[1]

[1,2,3,4]

Figure II.1.1: The generation tree for a sequential decision process (SDP) sublist generator with the input [1, 2, 3, 4].
At each recursive step, we either append a new element to the end of each partial configuration (sublist) or leave the
configuration unchanged.

Sublists A list is a sequence of elements, and a list with some missing elements is called a sublist—in other words,
a sublist is a portion of a larger list. We denote Ssubs as the set of all sublists. To construct a sublist, each item
has two possibilities, it can either remain unchanged or be deleted. Therefore, for a list with N elements, there are
2N choices. Thus, the number of all possible sublists or subsets for a list of length N is 2N . From this observation,
we can define two functions

append x a = x ++ [a]
ignore x a = x

append a new element a to a partial configuration x or ignore this element. These two functions serve as the decision
functions in the recursive process. Thus the decision functions list of the sublist generator is defined as

subs_fs :: Num a => [[a] -> a -> [a]]
subs_fs = [ignore, append]

The SDP generator for sublists is then rendered as

sdp_subs :: Num a => [a] -> [[a]]
sdp_subs = sdp_gen subs_p subs_fs subs_e

where
subs_p = const True
subs_e = [[]]

where subs_p and subs_e are the predicate and seed value in sublists SDP generator.
Given a list [1,2,3] :: [Int], sdp_subs [1,2,3] evaluates to

[[],[3],[2],[2,3],[1],[1,3],[1,2],[1,2,3]] :: [[Int]]. Fig. II.1.1 draws the generation tree for
sdp_subs [1,2,3].

Sequence Generating a sequence recursively is similar to the sublists generation. However, in this case, the
ignore function is not needed, as the goal is to recover the complete sequence. Consequently, the generator for
sequences is straightforward, involving only a single decision. The SDP generator simply reconstructs the input
data, which can be defined as follows

sdp_seq :: Num a => [a] -> [[a]]
sdp_seq = sdp_gen seq_p seq_fs seq_e

where
seq_fs = [append]

34

[]

[]

n=0

n=1

n=2

n=3

n=4

[]

[] [3][3,4] [2][4] [2,4]

[2]

[] [3] [2] [2,3] [1] [1,3] [1,2] [1,2,3]

[2,3][2,3,4] [1][1,4][1,3][1,3,4] [1,2][1,2,4] [1,2,3]

[1] [1,2]

[1]

[1,2,3,4]

Figure II.1.2: The sequential decision process generation tree for the 2-combination of list [1, 2, 3, 4]. The shaded
sublists are filtered sublists, violate the predicate ksub_q = (k >=) . length.

seq_p = const True
seq_e = [[]]

evaluate sdp_seq [1,2,3] will returns [1,2,3]. Although the sequence generator seems very trivial, in optimiza-
tion problems, it is often necessary to evaluate the objective value of a partial configuration. To make our program
more efficient, we need a method to update this objective value recursively. We can achieve this by combining the
sequence generator with the configuration generator of the problem using the “tupling” method.

K-sublists The terms “K-sublists” and “K-combinations” are synonymous, both representing sublists of size
K. We have developed two types of generators for generating K-sublists/combinations. To differentiate between
them, we refer to the generator developed in this Chapter as the K-sublist generator ksubs, while another generator
described in Section II.2.3 is termed the K-combination generator kcombs.

The K-combinations of a length N list is a sublist of it with fixed length K, such that K ≤ N . It is well-known
that the number of all possible K-combinations for a length N list is the same as the binomial coefficient, denoted
as CN

K or
(
N
K

)
, which is defined as

CN
K =

(
N
K

)
=

N !

K! (N −K)!
=
N (N − 1) . . . (N −K + 1)

K (K − 1) . . . 1
. (15)

We denote Sksubs as the set of all K-sublists of a given list. The K-combinations generator can be easily
obtained from the sublists generator by filtering out all configurations that have a length not equal to K, thus we
can construct the K-sublists generator as

ksubs_p k = (k ==) . length
sdp_ksubs k = sdp_gen (ksubs_p k) subs_fs subs_e

However, this program is not efficient, because we need to apply a predicate to every sublist generated by the sub-
list generator, and there are 2Nof them. Moreover, the predicate ksubs_p is not prefixed-closed, because a length K
sublist f a x does not imply that sublist x has length K. Fortunately, the predicate ksubs_p = (== k) . length
can be relaxed to ksubs_q = (k >=) . length, and predicate ksubs_q is prefixed-closed. Then we can construct
a more efficient combination generator can be constructed by using the fused SDP generator sdp_filtgen

ksubs_q k = (k >=) . length
sdp_ksubs ' k = filter (ksubs_p k) . (sdp_filtgen (ksubs_q k) subs_fs subs_e)

To illustrate, sdp_subs' 2 [1,2,3,4] evaluates to [[3,4],[2,4],[2,3],[1,4],[1,3],[1,2]], the generation
tree is depicted in Fig. II.1.2.

35

II.1.2.3 Assignments

Binary assignments There exist a one-to-one correspondence between the sublists of a list [a1, a2, . . . , aN] and
the 0-1 assignment lists [x1, x2, . . . , xN] ∈ {0, 1}N , whenever the element an exist in the sublists, xn equal 1 and
0 otherwise. The binary assignments are also called the characteristic vector of a sublist. For instance, the sublist
[1, 2] of list [1, 2, 3] has characteristic vector [1, 1, 0]. Therefore the number of binary assignments is the same as the
number of sublists. We denote the set of all possible binary assignments of a length N list as Sbasgns. Therefore,
the binary assignment generator is nearly identical to the sublist generator, with the decision functions modified to

asgn1 x a = x ++ [1]
asgn0 x a = x ++ [0]

The binary assignment generator can hence be defined as

sdp_basgns :: Num a => [a] -> [[a]]
sdp_basgns = sdp_gen basgns_p basgns_fs basgns_e

where
basgns_fs = [asgn0, asgn1]
basgns_p = const True
basgns_e = [[]]

Evaluating sdp_basgns [1,2,3] gives us
[[0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]].

Multiary assignments Multiary assignments are a direct generalization of binary assignments. Instead of having
binary labels 0 and 1, multiary assignments use a set of M labels, M = {1, 2 . . .M}. Similarly, For each element
in the list, there are M possible choices, resulting in a total of MN possible assignments. We denote the set of all
multiary assignments as Smasgns.

Thus the decision functions for the multiary assignments SDP generator consist of M decisions

asgnm i x a = x ++ [i]
masgns_fs m = [asgnm i | i <- [0..(m-1)]]

hence the SDP generator for multiary assignments is rendered as

sdp_masgns m = sdp_gen masgns_p (masgns_fs m) masgns_e
where
masgns_p = const True
masgns_e = [[]]

Evaluating sdp_masgns 2 [1,2,3] gives us
[[0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]].

II.1.2.4 Permutations

Permutations are probably the most popular combinatorial structure. Perhaps more algorithms have been developed
for generating permutations than any other kind of combinatorial structures [Sedgewick, 1977]. A permutation for a
given list is a rearrangement of its element. Given a list [1, 2, . . . , N], we denote a permutation π of list [1, 2, . . . , N]
as [π (1) , π (2) , . . . , π (N)], π (i) rearrange the position for element i. This is often called one-line notation. For
instance, a permutation [3, 2, 1] for list [1, 2, 3], we has π (1) = 3, π (2) = 2, and π (3) = 1. We denote the set of all
possible permutations as Sperms.

There are two classical approaches for generating permutations, based on selecting and inserting. In this Sub-
section, we focus on the inserting approach. The selecting approach, which can also be used for constructing
K-permutations algorithm, we will discuss it in the next Subsection.

Generating permutations can be done by inserting a new element into the existing partial permutations.
For instance, we can inserting 3 to partial permutation [1, 2] and [2, 1], we obtain all possible permutations
[[3, 1, 2] , [1, 3, 2] , [1, 2, 3] , [3, 2, 1] , [2, 3, 1] , [2, 1, 3]] for list [1, 2, 3]. We can define the insertion function in Haskell as

insertKth :: Int -> a -> [a] -> [a]
insertKth k a x = (take k x) ++ [a] ++ (drop k x)

36

[2,1]

n=0

n=1

n=2

n=3

[]

[1]

[1,2]

[1,2,3][1,3,2] [3,1,2] [2,1,3][2,3,1][3,2,1]

Figure II.1.3: The sequential decision process generation tree for the permutations of list [1, 2, 3]. In each recursive
step, a new element is inserted into every possible position between elements. For a list of length n list, there are
n+ 1possible choice of insertion.

the insertKth function insert a new element a to the kth position of list x. The decision functions for the permuta-
tions generator differ from those of the previous generators. In all the SDP generators discussed so far, the number
of decisions for all configurations at each step is fixed. However, when inserting an element into a list of length n,
there are n+ 1 possible positions for insertion. Thus, the number of decisions in the permutations SDP generator
varies recursively. We can define the decision functions for the permutations generator as being parameterized by
an integer k

perms_fs :: Int -> [a -> [a] -> [a]]
perms_fs k = [insertKth i | i <- [0..k]]

In contrast, our previous choice function could only define fixed decision functions fs. To accommodate
varying decision functions recursively, we need to modify the SDP generator. This leads us to the following new
SDP generator

sdp_gen2 p fs e = foldl (choice2 fs) e
where choice2 fs xs a = filter p [f a x | x <- xs, f <- fs $ length (xs!!0)]

Then we can define the permutation SDP generator as
sdp_perms :: [a] -> [[a]]
sdp_perms = sdp_gen2 perms_p perms_fs perms_e

where
perms_p = const True

Evaluating sdp_perms [1,2,3] give us [[3,2,1],[2,3,1],[2,1,3],[3,1,2],[1,3,2],[1,2,3]]. Fig. II.1.3
draws the generation tree for sdp_perms [1,2,3].

II.1.2.5 K-permutations

K-permutations is nothing more than a combination of permutation and K-combinations. In other words, the
K-permutations of a list are the rearrangement of the size K sublists. It has many applications in ML research,
such as the decision tree problem [Hu et al., 2019] and rule list [Angelino et al., 2018].

The most common approach for generating K-permutations can be understood as a recursive selection process,
the first element select from the given list [1, 2, . . . , N] have N choice. In the next step, we select another element
from the input except for the one we chose in the first step. If we only repeat K step of this process, then we
have a K-permutations generator, the number of the K-permutations is N × (N − 1) × . . . × (N −K) = N !

(N−K)! .
When K = N , we have N × (N − 1) × . . . × 1 = N ! all possible permutations. We denote the set of all possible
K-permutations of a length N list as Skperms.

This selection process leads to a new definition for the choice function. In this case, we do not merely apply the
decision functions to each configuration. Instead, at each step, we need to select elements from the input list that
have not been previously selected. This requires checking if the newly selected element already exists in the current
configuration. We can define a relation as follows

37

n=0

n=1

n=2

[]

[1]

[2,1] [3,1] [4,1]

[2]

[1,2] [3,2] [4,2] [1,3] [2,3] [4,3] [1,4] [2,4] [3,4]

[3] [4]

Figure II.1.4: The sequential decision process generation tree for the 2-permutations of list [1, 2, 3, 4]. This process
recursively selects new elements from the input list and appends them to the end of the current configuration. If the
current configuration has n elements, there are N − n possible choice of selection.

[[1]]n=1

n=2

n=3 [[1],[2],[3]][[1],[2,3]][[1,2],[3]][[1,2,3]]

[[1,2]] [[1],[2]]

Figure II.1.5: The sequential decision process generation tree for the list partitions of list [1, 2, 3]. In each recursive
step, a new element is either appended to the last element of a configuration or used to create a singleton list containing
this new element.

r :: Eq a => a -> [a] -> Bool
r i y = all (\b -> b /= i) y

This function checks if element i exist in configuration y. We can now define the new choice function choice3 and
the new SDP generator sdp_gen3 as

sdp_gen3 k p e x = foldl (choice3 x) e (take k x)
where choice3 x ys a = filter p [y ++ [a] | a <- x, y <- ys, r a y]

where the operation (++ [a]) can be understood as our decision function f, and we only apply it when r a y
equals True.

Now we can define the K-permutations SDP generator as

sdp_kperms k = sdp_gen3 k kperms_p kperms_e
where
kperms_p = const True
kperms_e = [[]]

Evaluating sdp_kperms 2 [1,2,3,4] returns [[2,1],[3,1],[1,2],[3,2],[1,3],[2,3]]. Fig. II.1.4 draws the
generation tree for sdp_kperms 2 [1,2,3,4].

II.1.2.6 List partitions

A partition of a list is to divide this list into non-empty consecutive segments. For instance, the set of all possible
list partitions of [1, 2, 3] is

{[1, 2, 3] , [[1, 2] , [3]] , [[1] , [2, 3]] , [[1] , [2] , [3]]} . (16)

38

The number of partitions for a given list is equal to the number of ways to create continuous non-empty segments.
This can be understood as inserting partitions into the spaces between adjacent elements in the list. For instance,
the partitions for the list [1, 2, 3] can be described as follows

123

12 | 3
1 | 23

1 | 2 | 3

This approach provides a recursive algorithm similar to the sublist SDP generator. For each space between two
adjacent elements, we can either insert a separator | or ignore it. This is equivalent to saying that we either append
a new element to the last segment or create a new segment. This gives us two decision functions, which can be
defined in Haskell as follows

appdlast :: [[a]] -> a -> [[a]]
appdlast x a = init x ++ [(last x) ++ [a]]

extent :: [[a]] -> a -> [[a]]
extent x a = x ++ [[a]]

Thus, we can define the SDP generator for list partitions as follows

sdp_parts :: [a] -> [[[a]]]
sdp_parts x = sdp_filtgen parts_p parts_fs (parts_e x) (drop 1 x)

where
parts_fs = [appdlast, extent]
parts_p = const True
parts_e x = [[take 1 x]]

The SDP generator for list partitions is very similar, except for list partitions we start from a non-empty seed value
parts_e x = [[take 1 x]] which is the first element of input list x, since we do not allow empty segments in list
partitions. Evaluating sdp_parts [1,2,3] gives us [[[1,2,3]],[[1,2],[3]],[[1],[2,3]],[[1],[2],[3]]].

Fig. II.1.5 draws the generation tree for sdp_parts [1,2,3].

II.1.3 Lexicographic generation
Generating combinatorial structures based on SDPs is not very common in the study of combinatorial generation.
A significant proportion of research in this field focuses on generating combinatorial configurations by assuming
an intrinsic ranking or ordering among all configurations. The most common ordering is to sort the configurations
based on some ordering. The most common one is lexicographic ordering, which is based on the familiar concept of
the ordering of words in dictionaries. We use the symbol ≺l to represent the lexicographic ordering between values,
and <l to denote the lexicographic ordering between configurations. We now define what is lexicographic ordering
formally.

Definition 5. Lexicographic ordering. In lexicographic order we have [a1, a2, . . . , aN] <l [b1, b2, . . . , bM] if either

1. exist a n ∈ N , such that an ≺l bn and ai = bi, ∀i = 1, 2, . . . , n− 1, or,

2. N < M and an = bn, ∀n ∈ N .

Once we have an ordering among configurations, we immediately can define a ranking function and its inverse
unranking function. These two functions define a bijection between a configuration and its intrinsic rank. In other
words, the ranking and unranking functions have type

rank : S → R
unrank : R → S,

(17)

where S is a set of all configurations in the same combinatorial structure of a given length, and R = {1, 2, . . . , |S|}.
For instance, when S is the set of all sublists for a length N list, then R =

{
1, 2, . . . , 2N

}
.

39

The primary use of a lexicographical generator is to generate random configurations with equal probability based
on their rank. Thus lexicographical generators are designed for random generation rather than for generating all
possible configurations. Although the asymptotic complexity of this generator is the same as others, it is rarely
used for generating all possible configurations due to a large constant factor hidden in the Big O notation, which
makes it less practical for extensive generation tasks.

Despite the inefficiency of the lexicographical generator in exhaustive generation, it has the following two po-
tential uses in combinatorial optimization

1. Random generation for producing upper bounds: We can randomly select integers from set R, and
then use the unranking function to obtain the corresponding configurations. The objective values of these
configurations can serve as the upper bound.

2. Storing configurations by their integer representation: In combinatorial generation, the size of con-
figuration space S is typically polynomial or even exponential in the data size N , with each configuration
requiring O (N) space to store. Storing all these configurations can be memory-intensive. Instead of saving the
configurations themselves, which demand substantial memory, it is often more efficient to store their integer
representations using the rank function. This approach reduces memory usage by saving only the integer
representation of a configuration rather than the entire configuration.

The second use can be combined with the SDP generator. During each recursive generation step, numerous candidate
configurations arise, and storing these configurations in their integer representation (bit format) can significantly
reduce memory usage. We will refer to the SDP generator that replaces combinatorial configurations with their
integer representations during the recursive generation steps as the integer SDP generator.

However, lexicographic ordering is not the most ideal for constructing such an SDP generator. Embedding lexi-
cographic ordering directly into SDP generation is inefficient because it requires frequent transformations between
the configuration and its integer representation.

Instead, configurations generated by SDP are naturally associated with an ordering known as minimal change
ordering. Research on combinatorics generation with minimal change ordering is referred to as combinatorial
Gray codes (CGCs). Minimal change ordering aligns with the principle of optimality but within the context of
combinatorial generation. Combinatorial Gray codes generation can be considered a special case of SDP generation,
and this will be explained in the next section.

II.1.4 Combinatorial Gray codes
In combinatorial optimization, randomly generating a few configurations using a lexicographic generator cannot
guarantee exactness. Lexicographic generation is inefficient for generating all possible configurations because con-
secutive configurations in lexicographic order can be combinatorially very different. For instance, the sublists of list
[1, 2, 3] in lexicographic order are [] , [1] , [1, 2] , [1, 2, 3] , [1, 3] , [2] , [2, 3] , [3]. Here, configurations [1, 3], [2] are adja-
cent but combinatorially distinct. Therefore, lexicographic generation is not well-suited for exhaustive generation.

To address this issue, research in combinatorial generation explores the concept of minimal change ordering.
When generating all 2N sublists sequentially, it is often desirable to do so in a manner where any two consecutive
configurations have the smallest possible distance 7 between them.

Minimal change ordering organizes configurations so that, at each recursive step, only one new element is added
to each configuration. This approach employs a similar principle to that used in SDP generation, with the key
difference being the ordering of configurations. In basic SDP generation, the ordering of configurations is not a
concern, whereas, in combinatorial Gray codes (CGCs), the ordering is crucial.

There is a vast amount of research on CGC generators, and we do not have space to cover all of it. Instead, we
will present a few simple and classical examples. More importantly, the underlying principles of these generators
can be further explored within our framework. To streamline our discussion, we will focus solely on the recursion,
ranking, and unranking algorithms for each Gray code algorithm Proofs and construction methods are beyond the
scope of our study, interested readers can refer to Kreher and Stinson [1999].

II.1.4.1 Sublists

Definition 6. Sublists distance. Given a list of sublists Ssubs, and two sublists s1, s2 ∈ Ssubs, we define the
symmetric difference of two sets s1 and s2 as

s14s2 = (s1 − s2) ∪ (s2 − s1) , (18)
7The definition of “distance” varies depending on the combinatorial structure.

40

[01]

n=0

n=1

n=2

n=3

[]

[1]

[00]

[0]

[11] [10]

[000] [001] [011] [010] [110] [111] [101] [100]

Figure II.1.6: The combinatorial Gray code generation tree for the binary assignment of a length 3 list.

where s1 − s2 is the list difference defined as [x | x ∈ s1 ∧ x /∈ s2], for instance [1, 2, 3] − [2] = [1, 3]. Next, we can
define the distance of two sublists as the size of their symmetric difference

dsub (s1, s2) = |s14s2| . (19)

Alternatively, if we represent the sublists Ssubs as the binary assignments Sbasgns that we described in Subsection
II.1.2.3, dsub (s1, s2) equal to the number of entries that s′1, s′2 ∈ Sbasgns are different. The number of different entries
for two configurations s′1, s′2 ∈ Sbasgns is called Hamming distance dHam (s′1, s

′
2). In other words, dsub (s1, s2) =

dHam (s′1, s
′
2), it represents the number of elements that need to be added to and/or deleted from one sublist in

order to obtain the other.
The minimal change ordering for two sublists s1, s2 ∈ Ssubs is precisely when dsub (s1, s2) = 1. An example of

minimal change ordering for list [1, 2, 3] is

[] , [3] , [2, 3] , [2] , [1, 2] , [1, 2, 3] , [1, 3] , [1] . (20)

Similarly, the binary assignments in minimal change ordering have Gray code

[0, 0, 0] , [0, 0, 1] [0, 1, 1] [0, 1, 0] [1, 1, 0] [1, 1, 1] , [1, 0, 1] , [1, 0, 0] . (21)

Geometrically, binary assignments can be visualized as the vertices of an N -dimensional unit cube. Each
Hamiltonian path through this N -dimensional unit cube represents a minimal change ordering, where the edges
connecting adjacent vertices have a Hamming distance of one, and each vertex is visited exactly once. Due to the
diversity of Hamiltonian paths in sublist generation problems, considerable research has been devoted to various
constructions of Gray codes. For sublist generation, we will examine a particularly simple class of Gray codes known
as the binary reflected Gray codes.

The binary reflected gray code The binary reflected Gray code for all possible 0-1 binary assignments for a
given length N list is denoted as GN , and is defined as

GN =
[
GN

0 , G
N
1 , G

N
2 , . . . , G

N
2N−1,

]
, (22)

where GN
r ∈ Sbasgns is the characteristic vector of a sublists in Ssubs, and 0 ≤ r ≤ 2N − 1. The Gray code GNcan

be obtained by recursive function

G0 = []

Gn =
[
[0] ∪Gn−1

0 , . . . , [0] ∪Gn−1
2n−1−1, [1] ∪G

n−1
2n−1−1, . . . , [1] ∪G

n−1
0

]
,

(23)

or equivalently
G0 = []

Gn = [[0]] ◦Gn−1 ∪ [[1]] ◦ rev
(
Gn−1

)
,

(24)

where ◦ is the Cartesian product of two lists of lists, for instance, [[a] , [b]] ◦ [[c] , [d]] = [[a, c] , [a, d] , [b, c] , [b, d]] and
the function rev : [a] → [a] that reverses a list, the reverse function is the reason that why it is called reflected
Gray code. The Gray code Gn is constructed from Gn−1 by two steps, we first append a new element [0] to every

41

configuration in Gn−1 and then append a new element [1] to every element of rev
(
Gn−1

)
. The recursion (24) is a

CGC that can be proved through induction [Kreher and Stinson, 1999].
The next two Gray codes generated by recursion (24) are

G1 = [[0] , [1]]

G2 = [[0, 0] , [0, 1] , [1, 1] , [1, 0]]

G3 = [[0, 0, 0] , [0, 0, 1] , [0, 1, 1] , [0, 1, 0] , [1, 1, 0] , [1, 1, 1] , [1, 0, 1] , [1, 0, 0]] .

(25)

One way to understand the binary reflected Gray code for sublists generation is that CGC is a special SDP with
different generate ordering, the generation tree for the binary reflected Gray code G3 is drawn in Fig. II.1.6.

Next, we will discuss the ranking and unranking functions with respect to the ordering used in CGC. These two
functions are crucial for constructing efficient integer SDP generators, and their role will be elaborated upon in the
subsequent sections.

Ranking and unranking functions Constructing ranking and unranking function for the binary reflected Gray
code is associated to the following lemma.

Lemma 1. Suppose that N ≥ 1 is an integer, 0 ≤ r ≤ 2N − 1, and suppose that bN , bN−1 . . . b0 is the binary
representation of integer r, such that r =

∑N
i=0 bi2

i ∧ bN = 0, and GN
r = [aN−1, . . . , a0] ∈ GN is a 0-1 binary

assignment in all possible assignment generated by GN . Then we have

aj = (bj + bj+1) mod 2, (26)

and

bj =

N−1∑
i=j

ai mod 2, (27)

for j = 0, 1, . . . , N − 1.
The consequence of above lemma give rise to the definition for unranking and ranking function. We briefly

introduce the definition here, more detailed explanation can be found in Kreher and Stinson [1999].

Definition 7. Unranking function. Given a rank r ∈ R. From Lemma 1, we can define the unranking function
unrank : R×N → Ssubs for the binary reflected Gray code as

unrank (r,N) = GN
r = [aN−1, . . . , a0] , (28)

where each value an is defined as

an =

{
1 bn 6= bn+1

0 otherwise
, ∀n ∈ {0, . . . , N − 1} . (29)

Similarly, we can define ranking function as below.

Definition 8. Ranking function. Given a binary assignment GN
r = [aN−1, . . . , a0] ∈ GN . From Lemma 1, we can

define the unranking function rank : Ssubs ×N → R for the binary reflected Gray code as

rank
(
GN

r , N
)
= r, (30)

where r =
∑N

i=0 bi2
i ∧ bN = 0, and bj =

∑N−1
i=j ai mod 2.

II.1.4.2 K-sublists

The symmetric difference for any two configurations in Sksubs is greater than 2, i.e., dsubs (s1, s2) ≥ 2, ∀s1, s2 ∈ Sksubs.
Hence, we need to redefine a minimal change ordering on Sksubs to ensure that any two consecutive combinations
have a distance of one. This special ordering is known as the resolving door ordering.

42

The revolving door algorithm The revolving door algorithm for generating K-sublists is closely related to
Pascal’s formula for binomial coefficients

CN
K = CN−1

K−1 + CN−1
K , (31)

this identity can be proved by observing that the CN
K K-sublists/K-subsets can be partitioned into two disjoint

sub-collections, the CN−1
K−1 (K − 1)-sublists contains the element N , and the CN−1

K K-sublists that do not contain
the element N .

Therefore, the recursive program for generating the K-sublists of the list [1, 2, . . . , N] in resolving door ordering
follows a pattern similar to Pascal’s formula (31). Define Gn

k as the list of K-sublists in revolving door ordering.
Note that CN

K denotes the collection of K-sublists, irrespective of the ordering.. Given Gn−1
k−1 , and Gn−1

k , the list
Gn

k is defined as follows
Gn

0 = [[]]

Gn
k =

[
Gn−1

k

]
∪
[
rev

(
Gn−1

k−1

)
◦ [[n]]

]
Gn

n = [[1, 2, . . . , N]] .

(32)

Ranking and unranking functions
Definition 9. Ranking function. Given a sublist [a1, a2, . . . , aK] of list [1, 2, . . . , N], and a1 < a2, . . . , aK . We can
define the ranking function rank : Sksubs ×N → R as

rank ([a1, a2, . . . , aK] ,K) =

∑K

i=1 (−1)
K−i

(
ai

i

)
if K is even

∑K
i=1 (−1)

K−i

(
ai

i

)
− 1 if K is odd.

(33)

Similarly, we can define unranking function as below.
Definition 10. Unranking function. Given a rank r ∈ R, the length of the sublists K ∈ N and the length of the
original list N ∈ N . We can define the unranking function unrank : R×N ×N → Sksubs as

unrank (r,K,N) =

∅ if K = 0

i+ 1 if K = 1

[x+ 1] ∪ unrank

(
r −

(
x

K

)
,K,N

)
if K > 1,

(34)

where x is the smallest integer such that
(

x
K

)
≤ r.

II.1.4.3 Permutations

The Trotter-Johnson algorithm Any two permutations must differ in at least two positions. The minimal
change ordering defined on permutations is when one configuration can be obtained by an adjacent transposition
(by exchanging two adjacent elements). The Trotter-Johnson algorithm is a Gray code for permutation generation.
It is defined recursively as

GN =
[
rev

(
ins
(
N,
[
GN−1

0 ×N
]))

, [N] ◦ins
[
GN−1

1 ×N
]
, rev

(
[N] ◦ins

[
GN−1

2 ×N
])
, . . .

]
, (35)

where GN is a list of all permutations for list [1, . . . N], and
[
GN−1

r ×N
]

means duplicates N times for the rth
configuration in GN−1. The ins

(
N,
[
GN−1

0 ×N
])

function inserts the new element N into the space between
two adjacent elements of each GN−1

0 in
[
GN−1

0 ×N
]
, when r is even, we insert new element from the end to the

beginning of GN−1
r . If r is odd, we inset N from the beginning to the end of GN−1

r . For instance, G2 = [[1, 2] , [2, 1]],
we can construct G3 from G2 as follows

1 2 3
1 3 2

3 1 2
3 2 1

2 3 1
2 1 3

Thus G3 = [[1, 2, 3] , [1, 3, 2] , [3, 1, 2] , [3, 2, 1] , [2, 3, 1] , [2, 1, 3]]. The generation tree of G3 is illustrated in Fig. II.1.7.

43

[2,1]

n=1

n=2

n=3

[1]

[1,2]

[1,2,3][1,3,2] [3,1,2] [3,2,1][2,3,1][2,1,3]

Figure II.1.7: The combinatorial Gray code generation tree for the permutations of list [1, 2, 3].

Ranking and unranking functions Both ranking and unranking functions for the Trotter-Johnson ordering
can be calculated recursively, this will help us to construct an integer SDP generator. Observing that descendants
for a configuration GN−1

r will have rank lies between n× r and nr + n− 1, this is because all configurations GN−1
r′

with rank r′ < r will have descendants that precedes the decedents of GN−1
r , and all configurations GN−1

r′ with
rank r′ > r will have descendants go after the descendants of GN−1

r . Now we can define the ranking and unranking
function recursively.

Definition 11. Ranking function. Given a permutation [π (1) , π (2) , . . . , π (N)] ∈ Sperms, the ranking function
rank : N × Sperms → R for the Trotter-Johnson algorithm can be defined recursively as

rank ([π (1) , π (2) , . . . , π (N)] , N) = N × rank ([π (1) , . . . , π (k − 1) , π (k + 1) , . . . , π (N)] , N − 1) + c, (36)

where π (k) = N and

c =

{
n− k if rank ([π (1) , . . . , π (k − 1) , π (k + 1) , . . . , π (N)] , N − 1) is even
k − 1 if rank ([π (1) , . . . , π (k − 1) , π (k + 1) , . . . , π (N)] , N − 1) is odd.

(37)

Definition 12. Unranking function. Given a rank r ∈ R, the unranking function unrank : R × N → Sperms for
the Trotter-Johnson algorithm can be defined recursively as

unrank (r,N) = [π (1) , π (2) , . . . , π (N)] , (38)

such that π (k) = N where

k =

{
N − (r −N × unrank (br/Nc , N − 1)) if br/Nc is even
r −N × unrank (br/Nc , N − 1) + 1 if br/Nc is odd.

(39)

II.1.5 Integer sequential decision process combinatorial generator
Embedding an ordering into configurations allows us to replace configurations with their integer representations
during SDP generation. To demonstrate the potential memory savings of this approach, consider the example of
permutation generation. A permutation is a list of length N given by

[
xπ(1), xπ(2), . . . , xπ(N)

]
, where the subscripts

(π (1) , π (2) , . . . , π (N)) represent a permutation of (1, 2, . . . , N). Each data item is typically a double-precision
floating-point number, which consumes 64 bits of memory. Consequently, storing each permutation requires 64×N
bits. However, the integer representation of a configuration requires at most log (|Sperms|) bits.

We shall refer to the SDP combinatorial generation process, which includes an embedded ordering (such as
lexicographic or any other type of ordering) for each configuration, as the ordered SDP combinatorial generator.
By replacing each configuration with the integer representing its rank, we obtain the integer SDP combinatorial
generator.

In this section, we provide a step-by-step derivation to construct two ordered SDP combinatorial generators:
one for the binary reflected Gray code ordering and another for the revolving door ordering. Following this, we
demonstrate how their corresponding integer SDP generators can be easily derived.

44

II.1.5.1 The binary reflected Gray code SDP generator

We have explained the binary reflected Gray code generator in mathematical form (23). In this Subsection, we
further investigate the binary reflected Gray code by implementing the recursion (23) as an ordered SDP generator,
and its integer SDP combinatorial generator can be implemented subsequently.

Ordered SDP combinatorial generator According to the binary reflected Gray code recursion (23), we can
define the following two update functions

left_upd :: [[Int]] -> Int -> [[Int]]
left_upd xs a = map (0:) xs

right_upd :: [[Int]] -> Int -> [[Int]]
right_upd xs a = reverse $ map (1:) xs

where the left_upd receives an input configuration list xs and keeps it unchanged. The right_upd function append
the new element a to the front of every configuration in xs, then reverse the ordering of this list to maintain the
binary reflected Gray code ordering.

Therefore, the SDP generator for generating sublists with binary reflected Gray code ordering is rendered as

sdp_gen4 p fs e = foldl (choice fs) e
where choice fs xs a = filter p $ concat [f xs a | f <- fs]

sdp_brgc :: [Int] -> [[Int]]
sdp_brgc = sdp_gen4 brgc_p brgc_fs brgc_e

where
brgc_fs = [left_upd ,right_upd]
brgc_p = const True
brgc_e = [[]]

evaluating sdp_brgc = [1,2,3] gives us [[0,0,0],[0,0,1],[0,1,1],[0,1,0],[1,1,0],[1,1,1],[1,0,1],[1,0,0]].

Integer SDP combinatorial generator After constructing the ordered SDP generator, the integer SDP gen-
erator can be constructed very easily by observing how integers are updated. Observing the updating patterns for
left_upd and right_upd functions, we can design the corresponding integer update functions as

left_upd_int :: [Int] -> Int -> [Int]
left_upd_int x n = x

right_upd_int :: [Int] -> Int -> [Int]
right_upd_int x n = reverse $ map (l-) x

where l = 2^n - 1

where n represents the recursion stage. Calculating right_upd [0,1,2,3] 3 returns [4,5,6,7].
The corresponding integer SDP generator is thus defined as

sdp_brgc_int :: [Int] -> [Int]
sdp_brgc_int = sdp_gen4 brgc_p_int brgc_fs_int brgc_e_int

where
brgc_fs_int = [left_upd_int ,right_upd_int]
brgc_p_int = const True
brgc_e_int = [0]

Evaluating sdp_brgc_int [1,2,3] will simply return the rank list [0,1,2,3,4,5,6,7], if we run the unranking
function on these integers, we can recover the original configurations.

II.1.5.2 K-combination SDP generator with revolving door ordering

We have already introduced a K-sublist generator ksubs in previous discussion. Given a list of sequence x :: [a],
ksubs will return a list of all possibleK-sublists. In other words, theK-sublist generator has a type ksubs x :: [[a]].
In this section, we introduced a new K-sublist generator, which will generate all possible sublists, but the sublists

45

n=4 𝑮𝟎
𝟒 𝑮𝟏

𝟒 𝑮𝟐
𝟒 𝑮𝟑

𝟒 𝑮𝟒
𝟒

n=3 𝑮𝟎
𝟑 𝑮𝟏

𝟑 𝑮𝟐
𝟑 𝑮𝟑

𝟑

n=2 𝑮𝟎
𝟐 𝑮𝟏

𝟐 𝑮𝟐
𝟐

n=1 𝑮𝟎
𝟏

𝑮𝟏
𝟏

n=0 𝑮𝟎
𝟎

n=4 [[]] [[1],[2],[3],[4]] [[1,2],[2,3],[1,3]
,[3,4],[2,4],[1,4]]

[[1,2,3],[1,3,4]
,[2,3,4],[1,2,4]]

[[1,2,3,4]]

n=3 [[]] [[1],[2],[3]] [[1,2],[2,3],[1,3]] [[1,2,3]]

n=2 [[]] [[1],[2]] [[1,2]]

n=1 [[]] [[1]]

n=0 [[]]

Figure II.1.8: The sequential decision process generation tree for all k-combinations, 0 ≤ k ≤ N , of the input list
[1, 2, 3, 4] in revolving door ordering. The left panel depicts the generation tree representing the combinations of the
same size in a configuration Gn

k . The combinations contained in Gn
k are illustrated in the right panel of the figure.

of the same length, i.e., combinations, will be grouped in the same list, and these lists are elements of the outer
lists. Therefore, this generator will have a output type [[[a]]] instead of [[a]]. To distinguish with ksubs and
subs, we name this generator as kcombs, connotes “K-combinations generator.”

Ordered SDP combinatorial generator As we introduced in Subsection II.1.4.2. The Gray code for generating
K-combinations is closely related to Pascal’s formula (31). It is not obvious how to construct an SDP generator
based on this formula. because a collection of k-combinations Cn

k depends on two collection of (k − 1)-combinations
Cn−1

k−1 , Cn−1
k , instead of a single sublist which only depends on a single sublist in the previous step. One way

to resolve this issue is to consider a collection of all size k-combinations Cn
k as a single configuration, then one

configuration in the this level is determined by two configurations in the last level. This is different from all SDP
generators in Section II.1.2, where each configuration in one level is determined by exactly one configuration in the
last level.

To address the above issue, we need to generalize the ordinary SDP generators defined in Section II.1.2, we can
still consider each configuration in the current level is updated to exactly one configuration in the next level by
one decision function, but the updated configurations that are adjacent to each other should be “merged” together
becomes a single.

Now, assume each configuration is a list of k-combinations in revolving door ordering, represented by Gn
k . Each

configuration is associated with two update functions upd_left and upd_right that generalize the ignore and
append functions used in subs generator, they are defined as

upd_left :: [[a]] -> a -> [[a]]
upd_left xs a = xs

upd_right :: [[a]] -> a -> [[a]]
upd_right xs a = map (++ [a]) (reverse xs)

where the upd_left function applies ignore function to every k-combinations in xs. Each element in xs represents
a list of k-combinations Gn

k . Since the ignore function essentially does nothing, the configuration xs remains
unchanged, so upd_left [[1],[2]] 3 = [[1],[2]]. Similarly, the upd_right apply append function to every
k-combinations in configuration (reverse xs), the use of reverse operation is because we want to maintain the
revolving door ordering, so we analogue the update rule of recursion (32). To illustrate,
upd_left [[1],[2]] 3 = [[2,3], [1,3]].

Next, we need to merge some configurations generated by applying upd_left and upd_right functions. For
instance, applying upd_left and upd_right to a list of configurations

[
G1

0, G
1
0

]
= [[[0]] , [[1]]] gives us

[[[0]] , [[2]] , [[1]] , [[1, 2]]]. Clearly, [[2]], [[1]] should belong to a single configuration in G2
1 because both of them are

size-one combinations. We can infer that the right update of Gn−1
k−1 and the left update of Gn−1

k should belong to
the same configuration Gn

k according to the pascal’s formula (31). More generally, in the left panel of Fig. II.1.8,
we draw the generation tree of the K-sublist SDP generator with revolving door ordering.

When we merge the right update of Gn−1
k−1 and the left update of Gn−1

k , we must exchange their ordering to
maintain the revolving door order. This is achieved using a helper function, revjoin, which joins two lists in reverse

46

order
revjoin :: [[a]] -> [[a]] -> [[a]]
revjoin x y = y ++ x

for instance, revjoin [[2]] [[1]] = [[1],[2]].
Observing that, two special configurations Gn

0 and Gn
n only related to Gn−1

0 and Gn−1
n−1, hence the left update of

the first configuration and the right update of the last configuration do not need to merge with any other updates.
Following this observation, we can now define a function

sort_revol :: [[[a]]] -> [[[a]]]
sort_revol xs = case xs of

[[]] -> [[]]
(x:ys) -> [x] ++ mappair revjoin (init ys) ++ [last ys]

which sorts and merges the adjacent configurations by revjoin and obtains a new list of configurations Gn
k , 0 ≤

k ≤ K, such that the k-combinations in Gn
k satisfies the revolving door ordering. The mappair function is defined

as
mappair :: (a -> a -> a) -> [a] -> [a]
mappair _ [] = []
mappair f (x:y:rest) = f x y : mappair f rest
Now, we have following generator for generating all k-combinations, 0 ≤ k ≤ N , in revolving door ordering
sdp_gen5 p fs e = foldl (choice5 fs) e

where choice5 fs xs a = filter p $ sort_revol [f x a | x <- xs, f <- fs]

sdp_combs_revol :: [a] -> [[[a]]]
sdp_combs_revol = sdp_gen5 combs_revol_p combs_revol_fs combs_revol_e

where
combs_revol_fs = [upd_left, upd_right]
combs_revol_p = const True
combs_revol_e = [[[]]]

evaluating sdp_combs_revol [1,2,3,4] gives us all possible k-combinations, for all 0 ≤ k ≤ K in revolving door or-
dering

[
G4

0, G
4
1, G

4
2, G

4
3, G

4
4

]
. The right panel of Fig. II.1.8 draws the generation tree for sdp_combs_revol [1,2,3,4].

The K-combination generator can thus be defined as
sdp_kcombs_revol k = (!!k) . sdp_combs_revol
For instance, evaluating sdp_kcombs_revol [1,2,3,4] gives us [[1,2],[2,3],[1,3],[3,4],[2,4],[1,4]].

Integer SDP combinatorial generator For all k-combinations, 0 ≤ k ≤ N , generation, the integer SDP
generator will generate a list of rank lists that start at rank zero. To distinguish the rank list for different k, we
tuple each rank list with an integer k. Then we can modify the upd_left and upd_right functions above as

upd_left_int :: ([Int],Int) -> Int -> ([Int],Int)
upd_left_int (x,k) n = (x,k)

upd_right_int :: ([Int],Int) -> Int -> ([Int],Int)
upd_right_int (x,k) n = (reverse $ map (l-) x, k+1)

where l = (n `choose` (k+1)) -1
where n is the index for the recursive stage, it represents the nth level in the generation tree (see Fig. II.1.8), bc is
the binomial coefficient for n `choose` (k+1). The choose function is defined as

factorial :: Int -> Int
factorial n = product [1..n]

choose :: Int -> Int -> Int
n `choose` k

| k < 0 = 0
| k > n = 0
| otherwise = factorial n `div` (factorial k * factorial (n-k))

47

Next, we modify the revjoin and sort_revol_int accordingly.

revjoin_int :: ([Int],Int) -> ([Int],Int) -> ([Int],Int)
revjoin_int (x,k1) (y,k2) = (y ++ x, k1)

sort_revol_int :: [([Int],Int)] -> [([Int],Int)]
sort_revol_int xs = case xs of

[([],0)] -> [([],0)]
(x:ys) -> [x] ++ mappair revjoin_int (init ys) ++ [last ys]

Finally, the integer SDP combinatorial generator with revolving door ordering is rendered as

sdp_gen5_int p fs e = foldl (choice5 fs) e
where choice5 fs xs a = filter p $ sort_revol_int [f x a | x <- xs, f <- fs]

sdp_combs_revol_int :: [Int] -> [([Int],Int)]
sdp_combs_revol_int = sdp_gen5_int combs_revol_int_p combs_revol_int_fs

combs_revol_int_e
where
combs_revol_int_fs = [upd_left_int , upd_right_int]
combs_revol_int_p = const True
combs_revol_int_e = [([0],0)]

evaluating sdp_combs_revol_int [1,2,3,4] gives us
[([0],0),([0,1,2,3],1),([0,1,2,3,4,5],2),([0,1,2,3],3),([0],4)], where the second element in each tu-
ple represents the size of the sublists.

Similarly, the integer K-combination generator sdp_kcombs_revol_int is defined as

sdp_kcombs_revol_int k = (!!k) . sdp_combs_revol_int

II.1.6 Chapter discussion
In this chapter, we introduce a variety of efficient combinatorial generators based on SDPs as well as several CGC
generators. Some of the SDP generators discussed here have been previously explored in the literature, either
within the scope of combinatorial generation studies [Kreher and Stinson, 1999, Ruskey, 2003] or in the context of
constructive algorithmics [Jeuring, 1993, Bird and De Moor, 1996]. The novel contribution of this chapter lies in
the integration of SDP generation with ranking functions, enabling the design of integer SDP generators.

Nevertheless, several limitations remain regarding SDP generators. First, although the SDP generators in-
troduced in this chapter are optimally efficient in terms of worst-case complexity, they are still difficult to solve
large-scale problems. In machine learning, distributed algorithms that require minimal or no communication be-
tween workers are often necessary to handle large-scale problems effectively, as seen in gradient descent algorithms
used for training deep neural networks. Unfortunately, none of the generators introduced in this chapter are
immediately embarrassingly parallelizable.

Additionally, SDP generators encounter significant limitations when applied to problems involving complex
combinatorial structures. The main limitation of these generators is their requirement that the input sequence
be provided before executing the generator. While this may not initially seem disadvantageous, as input data
is typically known for most problems, it poses challenges for many complex combinatorial optimization problems
(COPs) that require constructing combinatorial structures within other combinatorial structures—essentially, nested
combinatorial generators. Such nested generators frequently arise in machine learning, where problems often involve
nested combinatorics, such as those involving piecewise linear functions. To execute a nested generator using SDP,
it becomes necessary to store all possible configurations that are output by the first SDP generator before they can
be utilized by the second SDP generator. However, this approach is impractical for most problems involving nested
combinatorics, as the configuration size of a single combinatorial structure can grow exponentially or polynomially.
Storing all these configurations is both inefficient and memory-intensive.

Fortunately, both issues can be effectively addressed through the introduction of a datatype-generic general-
ization of the SDP—catamorphism. This generalization allows us to define combinatorial generators in a more
succinct and elegant manner. Moreover, the generality offered by catamorphism enables the design of recursive gen-
erators with desirable algebraic properties, as determined by the datatype that defines the catamorphism’s recursive
structure. For instance, catamorphisms defined over the join-list datatype, with its inherent associativity, allow

48

us to decompose problems in arbitrary ways, unlike the sequential decomposition inherent in SDP. This flexibility
facilitates the construction of embarrassingly parallelizable recursive generators.

49

II.2 Constructive algorithmics
II.2.1 What is constructive algorithmics and why we need to care about it?

Don Knuth: Premature optimization being the root of all evil in programming [Knuth, 1974]

Before exploring the details of constructive algorithmics, we must first discuss some motivations to study constructive
algorithmics.

In programming, a recursive function f : A → B is a function that call themselves from within their own
definition. The most common definition for recursion can take the abstract form

f = φ (f) (40)

where function φ is arbitrary function with type φ : A→ B → (A→ B).
The recursion function abstraction (40) has three immediate problems:
1. No unique solution guarantee. Although function φ can be arbitrary functions with the required type,

the (40) is not guaranteed to be a meaningful definition for all possible φ, it may have a unique solution up
to isomorphisms or we can prove there is no canonical choice exists.

2. Lack of structure .Because φ can be arbitrary forms, it is impossible to know the structure of the recursion
from the type information of φ only. Most of the time, the elaborate definitions for φ are very messy, it
is very difficult to understand or gain any insights from the definition of one particular recursive algorithm.
Therefore, it is unlikely that the design process for a particular recursion can be reused to guide the design of
recursions for different problems.

3. Lack of formal verification. This problem is an inherent consequence of problem 2. Due to the difficulty
in observing the structure of the recursion, no systematic and formal approach to verify the correctness of the
program. Proof of the programs can only rely on tedious induction, making it arduous to conduct and prone
to errors.

Most BnB algorithms are recursive functions and are typically presented in the form of (40). This is because
the design of BnB algorithms often relies on intuitive insights rather than systematic principles to support their
derivation. Consequently, proofs for BnB algorithms frequently depend on weak assertions or informal explanations
that do not hold up under close scrutiny. Formal proofs for these algorithms usually require induction and tend to
be excessively lengthy, making them challenging to understand.

Instead of abstracting the recursion in the form of (40), we dedicated to studying a more structured abstraction
for recursion, hylomorphisms. The recursion specified by a hylomorphism takes the form

f = ϕ · Ff · ψ (41)

where the F : C → C is a functor called base functor which determined the structure of the recursion, and the
function ψ : A → FA and ϕ : FB → B called F-coalgebra and F-algebra, we will see later these two name is
originated from the study of universal algebra. The recursion (41) is a more structured instance of (40), in other
words, any recursive function defined by specifying an operator φ can be equivalently defined by specifying an
appropriate F, ψ and ϕ.

The focus of this chapter is to study the theory of constructing structured recursion in the form of (41). There
are several benefits to examining recursions of this form: first, the sophisticated definition provided by (41) offers
deeper insights into the structure of the recursion; it ensures that the recursion will terminate; and it allows the
program to be reasoned about using its calculational properties.

The study of these structured recursions is part of constructive algorithmics or transformational programming
studies, originally explored by Meertens [1986], Bird [1987]. The theory of constructive algorithmics involves
deriving programs from specifications with an initial focus on producing the clearest and most understandable
program possible, disregarding efficiency concerns. Subsequently, an efficient program is derived without altering
the results or meaning of the original specification. In other words, it serves as a calculus for programs.

The value of this approach is in its separation of the concerns of correctness and of efficiency and imple-
mentability. It provides a flexible framework for formally verifying the correctness of algorithms, ensuring that
they meet specified requirements and constraints. This is crucial for safety-critical systems or high-stakes problems,
where incorrect behavior can have serious consequences. Constructive algorithmics was specifically developed to
design reliable programs for these tasks. It provides a foundation for formal methods in algorithm designs, and
encourages a deeper understanding of algorithms by demanding rigorous proofs of correctness. This approach can
yield insights into algorithmic properties and behaviors that might otherwise remain obscure.

50

II.2.2 Algebraic datatypes and catamorphism
Datatypes are abstractions of data structures. For instance, the finite list is a datatype, while the single-linked
list, the double-linked list, etc., serve as concrete implementations of the finite list. Many data types are defined
inductively, such as finite lists, binary trees, and natural numbers. It is reasonable to ask if we can find an elegant
language to unify these datatypes, and then we can know how to construct similar recursive datatypes for free.

In this section, we abstract datatypes categorically using F-algebra. An F-algebras is an arrow with type
alg : FA → A, the object A is called the carrier of the initial algebra, and functor F is referred to as the base
functor, which is defined through polynomial functors. In Haskell, the algebra is rendered as alg :: func a -> a,
with the syntax constraining type declarations to lowercase letters.

Given a polynomial functor F, the F-algebras, along with the homomorphisms between different F-algebras form
a category Alg (F). This category contains an initial algebra, which serves as the initial object in the category
of F-algebras, with their carriers representing the least fixed point for the given base functor F. Some researchers
will directly call the initial F-algebras as the models for recursive datatypes, rather than the carriers of the initial
F-algebras, and we adopt the same terminology in our discussion as well.

Recursive datatypes are formally defined through the principle of least fixed points. In the category Alg (F), the
homomorphisms between different datatypes (F-algebras) are called F-homomorphisms. These F-homomorphisms
are structure-preserving maps that generalize the homomorphisms in universal algebra. Furthermore, when the
domain of the F-homomorphisms is an initial algebra in the category of F-algebras, these F-homomorphisms are
called catamorphisms, which can be implemented as a recursive program and the recursive structures of catamor-
phisms depending on the structure of the input datatypes. In other words, the catamorphism is a datatype-generic
recursive program. Additionally, these constructions can be dualized, enabling the construction of co-recursive or
co-inductive datatypes, such as infinite lists (streams).

Before we provide the formal definitions for the terminology introduced above, we will first explain the main
concepts of this chapter by constructing a well-known example in computer science: the snoc-list, which is just the
list constructed from left to right. Through this example, we aim to illustrate the following concepts:

• Datatypes can be constructed algebraically by polynomial functors

• A recursive datatype can be modeled by the least fixed point of a base functor F

• The F-homomorphism from the initial algebra to other algebras in this category can be implemented as
recursive programs (catamorphisms).

II.2.2.1 An illustrative example: snoc-list

The snoc-list is the list built from right to left, for instance, a list [1, 2, 3] of nature numbers can be constructed
from the empty seed [] and then append each element from left to right, i.e [1, 2, 3] = [] : 1 : 2 : 3. In Haskell, we
can define a snoc-list by the following

data ListFl x a = Nil | Snoc x a

recall the previous Subsection I.2.4.3, the keyword data means we are defining a new datatype. On the left-hand
side of the equation, the term is referred to as a type constructor because it is utilized to construct a new datatype,
with two parameters a and x. On the right-side of the equation are the value constructors which are used to produce
the “terms” or “data” for this datatype.

Categorically, the type constructor ListFl a can be characterized as a polynomial functor FA = 1 + id ×
A, we will explain in more detail what this function means in the next section. The word “polynomial” refers
to how the construction of the polynomial functor mimics the construction of polynomials, consisting of “plus”
and “times” operations with respect to “constant terms” and “identities.” The finite list is indeed a built-in
datatype in Haskell, namely [a]. We define it explicitly to illustrate the concept of the recursive datatype, so
Snoc (Snoc (Snoc Nil 1) 2) 3 is the same as [] : 1 : 2 : 3 in Haskell (the list constructor operator (or
simply “cons” operator): can only be applied from right to left, we apply it from left to right here as an analogy).

Similarly, we can also define a list by constructing it from the right to left or we can take the empty list as the
seed and then join it with elements from both the right and left. These lists are the so-called cons-list and join-list.

The astute reader may ask, can the type variable x in datatype ListFl be arbitrary types? The answer is
affirmative. Indeed, we can even substitute the type constructor itself as the argument for the value constructor.
Then the datatype is parameterized by only one parameter a, which is rendered as

data Listl a = Nil | Snoc (Listl a) a

51

this definition exemplifies a recursive datatype. Listl a is called the least fixed point8 of the functor ListFl a. This
substitution can be made more systematically for any polynomial functors, because we can prove that Listl a is
isomorphic to ListFl (Listl a) a, that is Listl a ∼= ListFl (Listl a) a. This is a consequence of Lambek’s
lemma. The systematic derivation of a recursive datatype from a non-recursive definition can be accomplished more
broadly by introducing the theory of F-algebras.

Assuming we want to map from the datatype Listl a to Int. For instance, the length function, which
calculates the length of the list, can be implemented as follows

length :: (Num a) => [a] -> Int
length [] = 0
length (a : x) = (length x) + 1

the length function serves as a homomorphism from snoc-list to an integer, it recursively calculate the length of a
list from the left to right.

Equivalently, we can define the length function more compactly by using the foldl operator a

length :: (Num a) => [a] -> Int
length x = foldl (\acc a -> acc + 1) 0 x

where the function \acc a -> acc +1 is called a lambda expression. Lambda expressions are just anonymous
functions that are used because we need some functions only once, and the foldl operator is defined as

foldl :: (b -> a -> b) -> b -> [a] -> b
foldl f e [] = e
foldl f e (a : x) = foldl f (f e a) x

Indeed, foldl is precisely the catamorphism for the category of ListFl a-algebras. We can see the foldl
operator is a program defined by two patterns, the first pattern is the empty case, and the second pattern is the
non-empty case. This precisely corresponds to the definition of ListFl a datatype, which is defined by two terms,
Nil and Snoc (Listl a) a. As we mentioned, catamorphisms are the F-homomorphisms with initial algebras as
the input, in this case, the initial algebra is the ListFl a datatype.

The advantage of implementing recursive functions as a special case of a datatype-generic recursive program is
two-fold:

• First, other than use ListFl a as the input, we can feed catamorphism with more complex recursive datatypes
as the input, these datatypes are constructed by using different polynomial functors. The recursive structure
of catamorphism is automatically determined by the structure of the input datatype.

• Second, a datatype-generic recursive program—such as catamorphisms—allows us to produce module pro-
grams, we do not need to write a new program when we encounter a new problem, we just need to design a
new algebra. For example, in the second definition of length, we only need to define the recursive update
function f = \acc a -> acc +1 and the seed value e = 0. The functions constructed by generic program
foldl is more simple and compact.

II.2.2.2 Polynomial functors

A functor is called endofunctor if it has a type F : C → C which is a functor from a category to the category itself.
Polynomial functors are endofunctors constructed through four fundamental algebraic rules and basic functors in
an inductive manner. These functors are crucial for defining initial algebras, which are used to model recursive
datatypes. Throughout this paper, our focus will be exclusively on polynomial functors.

The four algebraic rules used to construct polynomial functors are outlined below.

Identity and constant functor The identity functor id, maps every object and morphism to itself, that is,
idX = X, and idf = f . Similarly, the constant functor A maps every object in this category to the same object A,
and morphisms to the identity function with respect to object A, i.e., AX = A and Af = idA.

8The term “least” connotes that it possesses a unique algebraic mapping to any other fixed point of the functor.

52

Product functor Given two arrows f : C → A and g : C → B, categorically, we use the symbol 〈 〉 to denote the
pairing arrow 〈f, g〉 : C → A × B that apply two arrows f , g to the same object, where A × B called the product
of two objects A and B. Some researchers will also use f △ g to denote 〈f, g〉. There are two projection arrows
fst : A×B → C, snd : A×B → C associated to pairing arrow 〈f, g〉. In Haskell, we can define them as

pair :: (c -> a) -> (c -> b) -> c -> (a,b)
pair f g = \a -> (f a, g a)

fst :: (a,b) -> a
fst (a,b) = a

snd :: (a,b) -> b
snd (a,b) = b

If all objects in a category C has a product, then we say the category C has products. Therefore the bifunctor
× :: C × C → C can be used to define product category, this bifunctor maps two objects two objects A and B to the
Cartesian product of A and B. If object A, B are lists, in Haskell, the product functor on objects is rendered as

cp :: [a] -> [a] -> [(a,a)]
cp xs ys = [(x, y) | x <- xs, y <- ys]

The product functor on morphisms called the cross operator9, it has type cross (f, g) : A × B → C × D for
f : A → C and g : B → D. Categorically, we write the cross operator as f × g. We can combine the projection
operator and the pairing arrow to define the morphisms on product category

cross :: (a -> c) -> (b -> d) -> (a,b) -> (c,d)
cross f g = paring (f . fst) (g . snd)
cross f g = \(x, y) -> (f x, g y)

.

Coproduct functor Coproduct is dual to product, the operation on it can be defined dually. In Haskell, the
coproduct functor on objects is just different value constructor that is separated by |

data Coproduct a b = Left a | Right b

Dually, given two arrows f : A → C and g : A → C, we can define the dual of the paring operator as
copair (f, g) : A+B → C. Categorically, we use the symbol [] to denote the coparing arrow as [f, g] : A+B → C,
it pronounced “case f or g”, so it is also called case arrow. Some researchers will also use f▽g to denote[f, g].
Similarly, there also exists two arrows inl :: A → A + B and inr :: B → A + B, which maps an object to a
coproduct. In Haskell, these functions are defined as

inl :: a -> Coproduct a b
inl a = Left a

inr :: b -> Coproduct a b
inr b = Right b

copair :: (a -> c) -> (b -> c) -> Coproduct a b -> c
copair f g (Left a) = f a
copair f g (Right b) = g b

the coparing/case arrow [f, g] : A+ B → C is implemented as the pattern matching in Haskell. In python, we use
match case statement to implement the case arrow.

Similarly, the morphisms between coproduct objects is rendered as

cocross :: (a -> c) -> (b -> d) -> Coproduct a b -> Coproduct c d
cocross = copairing (inl . f) (inr . g)

In the category of set, if A is an object of size m and B is an object of size n. Then A+B has size m+ n while
A×B has size m× n.

9The pairing arrow ⟨f, g⟩ : C → A×B can not be the product functor on morphisms, because the input type does not match.

53

Example 2. Snoc-list functor. The snoc-list functor ListFl a is defined as FA = 1 + id × A categorically, the
mapping on objectX is defined as FA (X) = 1+X×A and mapping on morphism f is defined as FA (f) = id1+f×idA
where 1 is the constant functor for the terminal object 1. In the category of set, the terminal object can be understood
as a singleton set, say 1 = {c}, functor 1 maps every object to a unique element (for instance, the element Nil in
the above definition) and every function to the identity function id1 over the object 1. Similarly, the functor A
maps every other object in the category to the same object A, and morphisms to the identity function idA over the
object A. id is the identity functor, which maps an object or a morphism to itself.

II.2.2.3 F-algebras and universal algebra

As mentioned, the theory of F-algebras is a generalization of classical universal algebra theory. We will explore their
connections and differences in this discussion, which may provide a better understanding of the theory of F-algebras
in the later sections.

The algebra theory describes specific algebraic structures, such as groups, monoids or rings. A monoid homo-
morphism h : M1 → M2 between two monoids M1 = (R,×, 1), M2 = (R,+, 0) is a structure map that satisfies
h (a ∗ b) = h (a) + h (b), for ∀a, b ∈ R. In the case of ordinary +, ∗ operation on the set of real numbers, h = log.
Let’s explore how to generalize the idea of monoids and monoid homomorphism in universal algebra theory using
the theory of F-algebras.

Assume C be a category and F an endofunctor on C. An F-algebra is an arrow alg : FA → A with carrier A.
In Haskell, we can implement functor F as func which is an instance of typeclass Functor, in other words, func is
a datatype that can derive a functor instance. Hence, the func-algebras (represent F-algebras mathematically) is
defined as alg :: Functor func =>func a -> a.

A morphism between algebras alg1 :: func a -> a and alg2 :: func b -> b is called F-homomorphism,
denoted as h, which are defined by the mapping between their carrier h :: a -> b such that
h . alg1 = alg2 . (fmap h).

In the context of F-algebra theory, the squared functor F = id×id is an appropriate model for monoid operations,
its object part and morphisms part are defined as FX = (X)

2
= X ×X and Fh = (h)2 = h× h. In Haskell, we can

implemented the squared functor F = id × id as the type synonyms of Haskell built-in tuples

type Sqr x = (x,x)

Then the monoid operation ∗ : R → R → R can hence be defined as an Sqr-algebra
alg :: Sqr Double -> Double, which can be implemented in Haskell as follows

time :: Sqr Double -> Double
time (a, b) = a * b

Similarly, the monoid operation + is defined as

plus :: Sqr Double -> Double
plus (a, b) = a + b

The monoid homomorphism log is precisely the F-homomorphisms from time to plus such that
log . time = plus . (fmap log), which makes the following diagram commute

Sqr Double

time
��

fmap log
// Sqr Double

plus
��

Double
log // Double

The generality of F-algebra to the universal algebra lies in three-fold: Firstly, while all operators in universal
algebra theory are binary, we are allowed to define non-binary operators in the theory of F-algebras. Secondly, the
theory of F-algebras permits different types for the arguments of the F-algebras. For instance, defining a binary
operation x⊕ y is a monoid operation defined as M = (X,⊕, id⊕), x, y are elements in a same set X, i.e., they have
the same type. On the contrary, in F-algebras, the arguments of an algebra are allowed to have different types.
For instance, the initial algebra on snoc-list has type Snoc :: (Listl a) -> a -> (Listl a) in Haskell, it first
receives an argument of type ListF a and then an argument a. Third, the operations it generalize to any SCPO
category—the category of complete partial orders with continuous functions—whereas universal algebra theory is
restricted to the category of sets.

In computer science, arithmetic expressions like 5x2 +3x+1can be represented as the following expression tree

54

+

��@
@@

@@
@@

��~~
~~
~~
~

×

����
��
��
��

��

+

�� ��?
??

??
??

?

5 ×

����
��
��
��

��

×

�� ��?
??

??
??

? 1

x x 3 x

the tree is evaluated from the bottom up to reconstruct the expression. This tree is always a binary tree, as all
non-leaf nodes represent binary operations, while the leaves are constrained to constants and variables. In the
theory of F-algebras, we can easily define a ternary tree by a polynomial functor FA = 1 + A × id × id × id. In
Haskell, the object parts of this functor is defined by

data TtreeF a x = Empty | Node a x x x

When we define a Ttree-algebra treeAlg, the catamorphisms cata treeAlg will recursively evaluate the tree
by using algebra from the bottom to up. The process diagram can be drawn as follows

treeAlg.Node a

ssggggg
ggggg

ggggg
ggggg

g

�� ++WWWW
WWWWW

WWWWW
WWWWW

WW

treeAlg.Node a

wwnnn
nnn

nnn
nnn

�� ''PP
PPP

PPP
PPP

P
Empty treeAlg.Node a

wwnnn
nnn

nnn
nnn

�� ''PP
PPP

PPP
PPP

P

Empty Empty Empty Empty Empty Empty

In this diagram, each node represents a computation step performed by the algebra alg. The evaluation proceeds
from the leaves (bottom) of the tree towards the root (top). This tree diagram demonstrates the generalizability
of F-algebras, the Ttree-algebra treeAlg receives not only 2 elements, and the initial Ttree-algebra Node contain
elements of two different types.

II.2.2.4 Catamorphism characterization theorem

Fixed point operator F-homomorphisms can be composed and have an identity, it follows immediately that
F-algebras and F-homomorphisms form a category called Alg (F). The initial F-algebra in : FµF → µF is the
initial object in the category Alg (F)[Malcolm, 1990, Bird and De Moor, 1996], where type µF is the carrier. The
carrier of the initial F-algebra is called the least fixed point of functor F. The carrier µF of the initial F-algebras
in : FµF → µF models the recursive datatype. Many literature commonly refer to initial F-algebras as models
for recursive datatypes, and we adopt this convention. According to Lambek’s lemma [Lambek, 1968], the initial
property induced an isomorphism µF ∼= FµF. Therefore, we can apply functor F infinite time to the datatype µF,
it is still isomorphic to itself. Hence µF is a recursive datatype. At the same time, the isomorphism between µF
and FµF tells us that the existence of initial algebra in : FµF → µF must has a corresponding reversed arrow
out : µF → FµF called terminal algebra, such that in · out = id and out · in = id.

The fixed point operator µ :: F → µF can be considered as a function which receives a functor and returns the
fixed point of this functor, we call µF the recursive datatype defined by functor F or the fixed point of functor F.
We can implement the fixed point operator µ as following

newtype Mu func = In {out :: func (Mu func)}

where keyword newtype is similar to data type constructor, but newtype can receive only one argument. The
braces in the right-hand side of = are called record syntax. In particular, In is called a record, and out is called the
field of this record. By using record syntax, we do not need to define the accessor for the component separately.
Here, In and out can be understood as two arrows with the types In :: func (Mu func) -> (Mu func) and
its reversed arrow out :: Mu func -> func (Mu func), these two arrows form the initial/terminal object of the
category Alg (F).

55

As an example, in the above section, we have explicitly defined the recursive definition for the snoc-list functor
ListFl a as Listl a, now we can equivalently define Listl a by just calling Mu (ListFl a), the least fixed point
of functor ListFl a will automatically be generated by Mu (ListFl a).

Initiality and catamorphism As we have discussed in Subsection I.2.4.2, an initial object in category C has
a unique morphism to other objects in this category. Hence there is a unique F-homomorphisms (unique up to
isomorphism) from µF → A which maps an initial algebra in : FµF → µF to any algebra alg : FA → A in the
category Alg (F), this F-homomorphism is called the catamorphism.

In Haskell, the catamorphism is an arrow from Mu func -> a, which maps the initial algebra
In :: func (Mu func) -> (Mu func) to an algebra alg :: func a -> a, such that
(cata alg) . In = alg . fmap (cata alg). We can apply the terminal algebra out on both sides of the equa-
tion. Then the structure condition for the F-homomorphisms cata alg can be rendered as

cata alg = alg . fmap (cata alg) . out, (42)

this is called catamorphism characterization theorem. In other words, the following diagram commute

func (Mu func)

In
��

fmap (cata alg)
// func a

alg

��
Mu func

cata alg //

out

OO

a

from the definition of catamorphism, we immediately have the reflection law cata In = id. This is because a
catamorphism always maps an initial algebra In to another algebra alg, when alg = In, the catamorphism maps
the initial algebra In to itself, thus the catamorphism becomes the identity function.

Given an F-algebra alg :: Functor func =>func a -> a, where base functor func is constrained in functor
class Functor, the catamorphism characterization theorem (42) can be defined as

cata ::Functor func => (func a -> a) -> Mu func -> a
cata alg = alg . fmap (cata alg) . out

where the catamorphism cata takes an algebra alg :: Functor func =>func a -> a and a fixed point type
Mu func as input. Although the fixed point input is not explicitly given in the definition of the function, it is
reflected in the type declaration. This is again because of the use of currying. In the case here, the catamorphism
cata receives an algebra alg :: func a -> a and then returns a partial function of type Mu func -> a.

One of the most important corollary of the catamorphism characterization theorem is the catamorphism fusion
law. Fusion gives the condition that has to be satisfied in order to “fuse” the composition of a function with a
catamorphism into a new catamorphism. The catamorphism fusion law is defined as follows.

Corollary 1. Catamorphism Fusion Theorem. Given a function h :: a -> b, an algebra alg1 :: func a -> a
and another algebra alg2 :: func b -> b, the fusion law state the following implication

h . (cata alg1) = cata alg2 ⇐= h . alg1 = alg2 . (fmap alg1), (43)

and the following diagram commute

func (Mu func)

In
��

fmap (cata alg1) // func a

alg1

��

fmap h // func b

alg2
��

Mu func
cata alg //

out

OO

a h // b

The proof for the fusion law beyond the scope of this thesis, interested readers can refer to [Bird and De Moor,
1996, Jeuring, 1993]. The fusion law (43) is also sometimes referred to as the promotion law. The distributivity and
associativity in universal algebra can be seen as special cases of this law. For example, the distributivity of h over
alg can be reformulated as h . alg = alg . (fmap h) over squared functor. This demonstrates again why the
theory of F-algebra generalize the universal algebra.

Fusion is a special case of reorder of computation. A function h satisfies the right-hand side equality can replace
the alg1 with a new algebra alg2. The program cata alg2 is usually much more efficient than h . (cata alg1).
In the context of COPs, cata alg1 represents a combinatorial generator gen, and then the function h performs

56

some computations on the configurations generated by gen. It is tempting to think if we can fuse computations,
such as filtering or evaluation on combinatorial configurations, into our generator gen. Indeed, both the evaluator
and the filter can be fused under certain conditions, and we will elaborate on this in a later section.

Catamorphisms are the most fundamental type of datatype-generic program, the functor is the syntax of the
program, which determines the structure of the recursion. We will see various useful datatypes in the next section,
and how these datatypes determine the structure of the recursion will be elaborated.

F-algebras represent the semantics of programs, for which determine the content of the recursion. In our context,
the content we aim to describe includes recursive optimization algorithms and recursive combinatorial generators.
We will present various useful algebras for combinatorial generation in Section II.2.3.

II.2.2.5 Various useful recursive datatypes

To highlight the effectiveness of polynomial functors, we construct several datatypes that are frequently used in ML
research and demonstrate both their utility and limitations.

Cons-list In snoc-list we construct a list from the left to right. The cons-list is essentially a dual definition of
the snoc-list. Categorically, it is defined by functor FA = 1 + A × id. The cons-list functor on-objects part is
implemented as

data ListFr a x = Nil | Cons a x

the recursive definition for cons-list can be derived by applying the fixed point operator to the cons-list functor
definition above, Mu (ListFr a). Equivalently, we can define the recursive definition of cons-list explicitly as

data Listr a = Nil | Cons a (Listr a)

Similarly, the catamorphism implied by this datatype is the foldr operator, which is defined as

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = []
foldr f e a:x = f a (foldr f e x)

The functor on morphism part for cons-list functor is FAf = id1 + idA × f . As we mentioned in Subsection
I.2.4.3, one way to derive the functor fmap for functor ListFr a is by using the deriving keyword after the datatype
declaration. We can also define the fmap for datatype ListFr a explicitly as

fmap :: (y -> x) -> ListFr a y -> ListFr b x
fmap _ Nil = Nil
fmap f (Cons a x) = Cons a (f x)

Join-list The join-list datatype is similar to a binary tree, but the binary tree datatype does not have associativity.
Rather than constructing a list from right to left or left to right, we can assume there exists a seed element, and then
the list is constructed from both sides. The polynomial functor for defining the join-list datatype can be expressed
as FA = 1 + A + id × id.

In Haskell, the join-list functor and its recursive definition are rendered as

data ListFj a x = Nil | Single a | Join x x
data Listj a = Nil | Single a | Join (Listj a) (Listj a)

similar to the cons/snoc-list case, the recursive definition can be equivalently defined by Mu (Listj a).
Categorically, the morphisms part of the mapping is defined as FA (f) = id1 + idA + f × f . The explicit Haskell

implementation of fmap based on ListFj a functor is given as

fmap :: (Functor func) => (a -> b) -> func a -> func b
fmap f Nil = Nil
fmap f (Single a) = Single a
fmap f (Join x y) = Join (f x) (f y)

In the join-list datatype, we can freely join the list from both sides. This gives us the freedom to split the
list in an arbitrary way and then join them together using a Join operator. Therefore, the catamorphism with
a join-list as input follows a recursive pattern: it splits the problem in an arbitrary way, solves each sub-problem
independently, and then the solutions are “joined” together using a ListFj-algebra . In particular, if this algebra is

57

associative, we can easily construct an embarrassingly parallelizable recursive program based on join-list datatype.
We will investigate this fact further and construct a few embarrassingly parallelizable catamorphism generators
based on the join-list datatype.

As previously discussed, Haskell provides a built-in list datatype [a]. If we want to work with lists, it would
be much more convenient to use the built-in list [a] directly with the cata alg function. However, cata alg has
a type Mu f -> a, it will be more convenient if cata alg has type [a] -> a, as it would be cumbersome to write
an input like Join (Single 1) (Join (Single 2) ((Single 3))) instead of [1,2,3]. To achieve this, we need
a helper function that transforms the built-in list datatype [a] into the recursive list datatype Mu f defined by us.
For example, the transformation from [a] to Mu (ListFj a) can be defined through the following function

conv :: [a] -> Mu (ListFj a)
conv [] = In (Nil)
conv [a] = In (Single a)
conv (a:x) = In (Join (conv [a]) (conv x))

then the join-list catamorphism with built-in list [a] as input can hence be defined as

cata :: [a] -> a
cata alg = alg . fmap (cata alg) . out . conv

Note that a new conv must be defined for each new functor.
Rather than define a converting function conv, it is much more convenient to define an ad-hoc terminal algebra

out. This ad-hoc out function on the join-list can be defined as

out :: [a] -> ListFj a [a]
out [] = Nil
out [a] = Single a
out (x:y) = Join [x] y

In the following discussion, we will implicitly assume that we have defined the ad-hoc out function when we are
working on lists.

Similarly, for the cons-list, we can define an ad-hoc terminal algebra as

out :: [a] -> ListFr a [a]
out [] = Nil
out (a:x) = Cons a x

Note that the out function defined here is an ad-hoc definition specific to the join-list functor ListFj a and the
cons-list functor ListFr a. In contrast, the out field in the definition of the record Mu f is polymorphic with respect
to any polynomial functor and can be viewed as an imaginary function with the type out :: Mu f -> f(Mu f).

Algebraic directed graph Graph is a ubiquitous datatype in ML research. For instance, the directed graph is
widely used in modeling probabilistic or causal relations. The most common definition for the graph is to define a
pair G = (V,E), where V is a set of vertices and E ⊆ V × V is a set of edges. However, this definition suffers from
the problem that it is easy to define malformed graphs, i.e., an edge refers to a non-existent vertex. For instance,
if we have a graph defined as G = ({1} , {(1, 2)}), the vertex set {1} contains only one vertex, but the edge (1, 2)
refer to the non-exist vertex 2.

This naturally raises the question of whether we can formulate a definition for a graph that precludes the
construction of malformed graphs. The answer is affirmative, this definition of algebraic graphs comprises four
graph construction primitives. The simplest graph is the empty graph, we denote it by e = (∅, ∅) ∈ G. Similarly,
the single vertex graph with one vertex v is denoted by v = (v, ∅) ∈ G. There are two primitive binary operations
for constructing a larger graph from the empty graph and single-vertex graph. These two primitive operations are
called overlay and connect, are defined as

Overlay ((V1, E1) , (V2, E2)) = (V1 ∪ V2, E1 ∪ E2)

Connect ((V1, E1) , (V2, E2)) = (V1 ∪ V2, E1 ∪ E2 ∪ (V1 × V2)) .
(44)

the overlay of two graphs comprises the union of their vertices and edges, and the connect operation takes the
union of two graphs and creates new edges from each vertex in V1 to each vertex in V2. For example, the graph

58

Connect (1,Overlay (2, 3)) can be illustrated as
2

1

@@��������
// 3

The graphs constructed by the above four primitives are called algebraic directed graphs (ADPs). Graphs
constructed in this way are sound and complete, in the sense that malformed graphs cannot be constructed and
any graphs can be constructed in this way, proofs can be found in Mokhov [2017].

The four primitive operations in ADG can be defined by a polynomial functor FA = 1 + A + id × id + id × id.
In Haskell, we can implement it by defining datatype

data DiGraphF a x = NilF | VertF a | OverF x x | ConnF x x

Similarly, the explicit recursive definition can be rendered as

data DiGraph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

The directed graphs constructed in this way are safe and flexible. We can add additional axioms to extend the
definition of directed graphs to represent undirected, reflexive, and hypergraphs, etc.

The algebraic directed graph functor on the morphism part is defined as FAf = id1 + idA + f × f + f × f . The
fmap based on functor DiGraphF a functor can be implemented explicitly as

fmap :: (y -> x) -> DiGraph a y -> DiGraph b x
fmap _ Empty = Empty
fmap f (Vertex a) = Vertex (f a)
fmap f (Overlay x y) = Overlay (f x) (f y)
fmap f (Connect x y) = Connect (f x) (fu y)

Binary tree In the definition of a binary tree, every node in the tree has an associated node element and two
subtrees. Hence, we can define the binary tree functor as FA = 1+ id×A× id. The datatype implement this functor
is defined as

data BtreeF a x = Empty | Node x a x

The explicit recursive definition is rendered as

data Btree a = Empty | Node (Btree a) a (Btree a)

The binary tree functor on the morphism part is defined as FAf = id1+f× idA×f . Similarly the corresponding
fmap based on BtreeF a functor can be rendered explicitly as

fmap :: (y -> x) -> BtreeF a y -> BtreeF b x
fmap _ Empty = Empty
fmap f (Node x a y) = Node (f x) a (f y)

II.2.3 Catamorphism combinatorial generation
In this section, we will reformulate the generators introduced in Section II.1.2 of Part I, where various combinato-
rial generators are built using the foldl operator, which corresponds to the catamorphism based on the snoc-list
datatype. To emphasize the datatype-generic nature of catamorphisms, we demonstrate how to construct catamor-
phism generators based on both cons-list datatype and join-list datatype. The modularity of the catamorphism
generator is evident through this construction, as combinatorial generators based on cons-lists and join-lists are
instantiated simply by defining the appropriate ListFr a-algebras and ListFj a-algebras.

Note that some of the generators described in this section do not achieve optimal efficiency in Haskell. We use
Haskell primarily as a tool for explanation, while efficient implementations are conducted in an imperative language
such as Python or C++. Our goal is to clarify each generator as much as possible to aid understanding, rather
than to provide the most efficient Haskell code.

59

Additionally, after introducing the construction of generators for basic combinatorial structures, we explain how
to create efficient generators for more complex combinatorial structures by combining simpler ones. This is achieved
by introducing three fundamental fusion laws: filter fusion, product fusion, and cross product fusion.

II.2.3.1 Cross product operator

Before introducing the various combinatorial generators based on catamorphisms, it is important to highlight an
observation from our construction of SDP combinatorial generators in the previous section. The use of choice
functions can become cumbersome, as different choice functions must be defined whenever the decision functions
involve new properties.

Nevertheless, these choice functions have similar natures and appear very similar to the Cartesian product over
two lists. Indeed, both the Cartesian product operator and choice functions can be generalized using the cross
product operator. With the help of this operator, we can construct generators in a more elegant and succinct
manner.

In Haskell, we can define the cross product as

crp f x y = [f a b | a <- x, b <- y]

the cross product function is a generalization of the Cartesian product, it applies a binary function f to each element
a in x and each element b in y, and store them in the list. For instance, that Cartesian product operator can be
defined as cp x y = crp (,) x y, evaluate cp [1,2] [3,4] will return [(1,3),(1,4),(2,3),(2,4)].

We can define two other similar cross join operators crpr and crpl (short for “cross product, right” and “cross
product, left”) as follows

crpr f a y = [f a b | b <- y]
crpl f x b = [f a b | a <- x]

In combinatorial generation research, one frequently used operator is the cross join operator, which can be
specified as

crj x y = crp (++) x y

evaluate crj [[1,2],[2,1]] [[3,4],[4,3]] gives [[1,2,3,4],[1,2,4,3],[2,1,3,4],[2,1,4,3]]. Similarly,
we can define the “cross join, right” operator as crjr =crpr (++) and “cross join, left” operator as crjl = crpl (++).

The cross product operator is frequently employed in various combinatorial generation tasks, particularly for
catamorphisms based on join-list datatype. This is because the cross product encapsulates the essential idea in
the principle of optimality: the solution to smaller “subproblems” can be combined to solve a larger “problem.”
When working with two sets or lists of subproblems, the cross product operator enables us to explore all possible
combinations of solutions to these subproblems, which are then combined to obtain the solution to the final problem.

II.2.3.2 Catamorphism generators based on cons-list

The catamorphism-based combinatorial generators using cons-lists are essentially the same as the SDP generators
described in Section II.1.2. However, as demonstrated below, expressing the same concepts using different languages
with levels of abstraction can lead to significant differences. The combinatorial generators defined using cons-lists
are much more succinct compared to the definitions provided in Section II.1.2.

Similar to the SDP generators, to fuse a filtering process into a catamorphism defined over cons-list algebra, the
predicate must still be prefix-closed

p (x ++ y) = p x,

for all x and y. Given a cons-list algebra f, the prefix-closed condition can also be rendered as
p f (Cons a x) = q f (Cons a x) && p x, where q is modified predicate which is more efficient than q.

In this Subsection, we redefine most of the generators illustrated in Section II.1.2 using catamorphisms based
on cons-lists. Additionally, we introduce two new combinatorial generators that produce all possible initial or tail
segments of a list. These new generators will enable us to construct a more efficient permutation generator compared
to the previous definitions.

Sublists, K-sublists and K-sublists with revolving door ordering The sublist generator subs is defined
as

60

subsAlg Nil = [[]]
subsAlg (Cons a xs) = crj fs xs

where fs = [[], [a]]

subs = cata subsAlg

Similarly, since the max length predicate maxlen k = (<= k) . length is prefix-closed, the K-sublists ksubs
generator can be obtained by fusing the max length predicate with subsalg

ksubsAlg k Nil = [[]]
ksubsAlg k (Cons a xs) = filter (maxlen k) $ crj fs xs

where
fs = [[], [a]]
maxlen k = (<= k) . length

ksubs :: Int -> [a] -> [[a]]
ksubs k = cata (ksubsAlg k)

evaluating ksubs generate all k-sublists for k smaller thanK, ksubs 2 [1,2,3] = [[],[3],[2],[2,3],[1],[1,3],[1,2]].
Also, borrows the definition of upd_left, upd_right and sort_revol in Section II.1.5, the definition of

ksubs_revol is rendered as
ksubs_revolAlg :: Eq a => ListFr a [[[a]]] -> [[[a]]]
ksubs_revolAlg Nil = [[[]]]
ksubs_revolAlg (Cons a xs) = sort_revol [f x a | x <- xs, f <- [upd_left,

upd_right]]

ksubs_revol :: Eq a => [a] -> [[[a]]]
ksubs_revol = cata ksubs_revolAlg

Evaluating these sublist generators will produce the same results as the SDP generators in Section II.1.2.

Sequence In the case of sequence generation, there is only one decision function. Thus, we can define the sequence
generator and its algebra as follows

seqnAlg :: ListFr a [[a]] -> [[a]]
seqnAlg Nil = [[]]
seqnAlg (Cons a xs) = crj fs xs

where fs = [[a]]

seqn = cata seqnAlg

Initial segments and tail segments An initial segment of a list is also known as the prefix of the list. A list
y is an initial segment of x if there exists a z such that x = y ++ z. The function inits returns the list of initial
segments of a list, in increasing order of length. Conversely, a list y is a tail segment of x if there exists a z such
that x = z ++ y. The function tails returns the list of tail segments of a list, in decreasing order of length. In
Section 5.6 of Bird and De Moor [1996], two generators for producing initial and tail segments based on the cons-list
operator are provided, which are defined as follows

initsAlg :: ListFr a [[a]] -> [[a]]
initsAlg Nil = [[]]
initsAlg (Cons a xs) = extend a xs

where extend a xs = [[]] ++ (map (a:) xs)

inits = cata initsAlg

tailsAlg :: ListFr a [[a]] -> [[a]]
tailsAlg Nil = [[]]
tailsAlg (Cons a xs) = extend a xs

where extend a (x:xs) = (a:x):x:xs

61

tails = cata tailsAlg

Binary and multiary assignments The binary and multiary assignment generators can be considered as
sequences of cross join operations. For a binary assignment, the list [[0], [1]] is used, while for a multiary
assignment, the list [[i] | i <- [0..(m-1)]]. We can therefore define these two generators and their algebras
as follows

basgnsAlg :: ListFr a [[Int]] -> [[Int]]
basgnsAlg Nil = [[]]
basgnsAlg (Cons a xs) = crj fs xs

where fs = [[0], [1]]

basgns = cata basgnsAlg

masgnsAlg :: Int -> ListFr a [[Int]] -> [[Int]]
masgnsAlg m Nil = [[]]
masgnsAlg m (Cons a xs) = crj fs xs

where fs = [[i] | i <- [0..(m-1)]]

masgns m = cata (masgnsAlg m)

Permutations and K-permutations We have defined the permutation generator in Section II.1.2 based on
inserting a new element to the existing partial permutation, where we have defined an insertion function insertKth
that inserts a new element a to the existing partial permutation.

Notice that in the definition of insertKth, we always take the first k elements of list x and join it with new
element a and remaining list, for all k in [0..len(x)]. This is essentially the same as split x to a length k initial
segment and a length len(x)-k tail segment. Therefore, we can define a split function splits that generates all
possible splits of a list by zipping the results of an initial segment generator with a tail segment generator

pair :: (c -> a) -> (c -> b) -> c -> (a,b)
pair f g = \a -> (f a, g a)

splits :: [a] -> [([a],[a])]
splits = (uncurry zip) . (pair inits tails)

and the all possible insertion of insertKth for all k in [0..len(x)] can be defined by the following adds function
adds a x = [y ++ [a] ++ z | (y,z) <- (splits x)]
Thus we can define a more efficient permutation generator based on adds function, which can be defined as
permsAlg :: ListFr a [[a]] -> [[a]]
permsAlg Nil = [[]]
permsAlg (Cons a xs) = concat [adds a x | x <- xs]

perms = cata permsAlg
Also, by defining a crjrwd operator (short for, “cross join, right, without duplicates”), the K-permutations

generator can be defined more compactly as

r :: Eq a => a -> [a] -> Bool
r i y = all (\b -> b /= i) y

kpermsAlg :: Eq a => [a] -> ListFr a [[a]] -> [[a]]
kpermsAlg x Nil = [[]]
kpermsAlg x (Cons a ys) = crjrwd x ys

where crjrwd x ys = [y ++ [a] | a <- x, y <- ys, r a y]

kperms k x = cata (kpermsAlg x) (take k x)

62

List partitions The list partition, similarly, can be defined more compactly as

partsAlg :: Eq a => ListFr a [[[a]]] -> [[[a]]]
partsAlg Nil = [[[]]]
partsAlg (Cons a xs)

| xs == [[[]]] = [[[a]]]
| otherwise = [f x | x <- xs, f <- [appdlast a, extent a]]

parts :: Eq a => [a] -> [[[a]]]
parts = cata partsAlg

II.2.3.3 Catamorphism generators based on join-list

In this section, we provide a comprehensive explanation of the definition of several ListFj a-algebras used for gen-
erating basic combinatorial structures, including sublists, K-sublists, permutations, list partitions, K-combinations,
and K-permutations.

One immediate advantage of join-list algebras for generating combinatorial structures is that they facilitate
the design of embarrassingly parallelizable programs. It is known in the literature that associativity is the key
to designing embarrassingly parallelizable programs [Emoto et al., 2012]. Associativity enables us to perform a
sequence of operations without regard to the order of these operations. This is inherent in list join operation, that
is

x ++ y ++ z = (x ++ y) ++ z = x ++ (y ++ z) . (45)
Therefore, once we have a join-list algebra that is associative, we immediately obtain an embarrassingly parallelizable
program. This capability is crucial for solving large-scale combinatorial optimization problems.

Incorporating the filtering process into the join-list algebra differs from the cons-list case. For the join-list
datatype, fusing a prefix-closed predicate p within a join-list algebra is insufficient. Instead, a stronger condition is
required, the predicate p must be segment-closed

p (x ++ y) = p x && p y, (46)

for all x and y.

Sublists, K-sublists Intuitively, the join-list sublists generator is constructed from the fact that the sublists of
size k can only be constructed by joining possible sublists of size smaller than k. The sublist algebra is defined as
follows

�����
subsAlg :: ListFj a [[a]] -> [[a]]
subsAlg Nil = [[]]
subsAlg (Single a) = [[],[a]]
subsAlg (Join x y) = crj x y

subs = cata subsAlg

Similarly, it is straightforward to verify that the maximum length predicate maxlen k x is not only prefix-closed
but also segment-closed. Thus the K-sublists algebra can be viewed as a sublists algebra combined with a maximum
length filter, which is defined as follows

�����
ksubsAlg :: Int -> ListFj a [[a]] -> [[a]]
ksubsAlg k Nil = [[]]
ksubsAlg k (Single a) = [[],[a]]
ksubsAlg k (Join x y) = filter (maxlen k)(crj x y)

where maxlen k = (<= k) . length

ksubs k = cata (ksubsAlg k)

63

Binary assignments and multiary assignments Analogously, the binary assignment algebra is essentially
the same as the sublist algebra, which can be defined as

�����
basgnsAlg :: ListFj a [[Int]] -> [[Int]]
basgnsAlg Nil = [[]]
basgnsAlg(Single a) = [[0],[1]]
basgnsAlg (Join x y) = crj x y

basgns = cata basgnsAlg

and the multiary assignment generator can be defined as

�����
masgnsAlg :: Int -> ListFj a [[Int]] -> [[Int]]
masgnsAlg m Nil = [[]]
masgnsAlg m (Single a) = [[i]| i <- [0..(m-1)]]
masgnsAlg m (Join x y) = crj x y

masgns m = cata (masgnsAlg m)

Permutations To design a permutation generator based on the join-list datatype, the insertion or selection
processes used in the cons-list generator are no longer suitable. Instead, we need to merge a list of permutations
xs with another list of permutations ys, rather than inserting a new element a to a list of permutations xs.

To address this, Jeuring [1993] introduced a merge operator that can merge two permutations while preserving
the associativity, which is defined as follows

�����
merge x [] = [x]
merge [] y = [y]
merge x@(a:x') y@(b:y') = (crpr (++) [a] (merge x' y)) ++

(crpr (++) [b] (merge x y'))

The operation merge x y means that, in order to merge two partial permutations x and y, we need to insert the
element of y into all possible space of x while preserving the original ordering of elements in y. For instance,
evaluating merge [1,2] [3,4] gives us [[1,2,3,4],[1,3,2,4],[1,3,4,2],[3,1,2,4],[3,1,4,2],[3,4,1,2]].
In this result, the merged permutation maintains the order of the original partial permutations; for instance, 1 is
ahead of 2, and 2 is ahead of 1. Indeed, this merge function is the join-list version of the interleave function [Bird
and Gibbons, 2020]. We will discuss this function in greater detail in Chapter III.3 in Part III.

After defining this associative operation, the permutation algebra on the join-list can be constructed as follows

�����
permsAlg :: ListFj a [[a]] -> [[a]]
permsAlg Nil = [[]]
permsAlg (Single a) = [[a]]
permsAlg (Join x y) = concat (crp merge x y)

perms = cata permsAlg

List partitions The associative operation for list partition algebra, as presented by Jeuring [1993], is defined as

�����
segmake xs [] = [xs]
segmake [] xs = [xs]
segmake xs ys = [xs ++ ys, init xs ++ [last xs ++ head ys] ++ tail ys]

Hence the list partitions algebra based on join-list is rendered as

�����
partsAlg :: ListFj a [[[a]]] -> [[[a]]]

64

partsAlg Nil = [[]]
partsAlg (Single a) = [[[a]]]
partsAlg (Join x y) = concat (crp segmake x y)

parts = cata partsAlg

K-combinations and K-permutations The algebras for generating K-combinations and K-sublists are de-
signed to produce the same outcomes, but they differ in their algebraic structures, resulting in outputs of different
types. To distinguish between them, one is called, ksubsAlg, which is defined above. The other is called kcombsAlg;
its generator stores k-combinations of the same size k together in a single list, which has a different type compared
with the join-list ksubsAlg algebra defined above.

This kcombs generator is constructed from the observation that K-combinations can only be constructed from
two combinations with size sum up to K. This process is indeed a special kind of convolution product, which is
defined as

convol_filt :: ([a] -> [a] -> [a]) -> Int -> [[a]] -> [[a]] -> [[a]]
convol_filt f k x y = map process [0..k]

where
process n = concat [result i j | i <- [0..n], let j = n - i, i < length x, j

< length y, (i + j <= k)]
result i j = f (x !! i) (y !! j)

For instance, combinations of size 3 can only be constructed from two combinations with size, 3 and 0, 1 and 2, 2
and 1, and 0 and 3.

Assume we want to construct combinations of size K from two lists of combinations xs and ys, with size sum
up to K, we need to combine the combinations in xs and combinations in ys in all possible ways, i.e., the cross join
of xs and ys. The K-combinations generator kcombs can thus be defined as

�����
kcombsAlg :: Int -> ListFj a [[[a]]] -> [[[a]]]
kcombsAlg k Nil = [[[]]]
kcombsAlg k (Single a) = [[[]],[[a]]]
kcombsAlg k (Join xss yss) = convol_filt crj k xss yss

kcombs k = cata (kcombsAlg k)

Analogue to the design of the K-combination generator, the K-permutation generator is nothing more than the
integration of K-combinations and permutation. Therefore, in order to design a K-permutations generator, we just
need to replace the crj operator that is used in kcombsAlg with a crm operator (short for “cross merge”)

�����
kpermsAlg :: Int -> ListFj a [[[a]]] -> [[[a]]]
kpermsAlg k Nil = [[[]]]
kpermsAlg k (Single a) = [[[]],[[a]]]
kpermsAlg k (Join xss yss) = convol_filt crm k xss yss

where crm xs ys = concat $ crp (merge) xs ys

kperms k = cata (kpermsAlg k)

because both the merge and crp are associative, then crm is also associative.

II.2.3.4 Built complex combinatorial structures from the simpler basic structures

In our exploration, we have identified three fusion laws that can aid in constructing efficient combinatorial generators
for complex combinatorial structures. These three fusion laws are called filter fusion, product fusion, and cross
product fusion.

In particular, a specific instance of cross-product fusion is Cartesian product fusion, which is highly useful in
solving machine learning problems where there is a need to construct an efficient generator for enumerating the
Cartesian product of two or more basic combinatorial structures.

65

Another application of the Cartesian product fusion law enables us to evaluate the objective values of con-
figurations during the recursive generation process, this is known as evaluation fusion. In many combinatorial
optimization literature, evaluation fusion is often employed by default without undergoing verification for correct-
ness. The Cartesian product fusion law now formalizes it.

Filter fusion We have seen the use of filtering in constructing the K-sublists algebra, where configurations that
do not satisfy the predicate p = (<= k) . length are filtered out. In principle, we can define any predicates we
want to select configurations from the set of all candidate configurations in the search space S.

However, if our goal is to create an efficient combinatorial generator, it’s crucial to identify partial configurations
that will not satisfy the predicate before extending them to complete configurations. By eliminating these infeasible
configurations early on, we can avoid wasting computational resources. This technique is known as filter fusion.

Nevertheless, in the previous two Subsections, we have explained that the filter fusion condition for cons-list
algebra is prefix-closed, which is defined as

p (x ++ y) = p x. (47)
For join-list algebra, the predicate is required to be segment-close

p (x ++ y) = p x && p y. (48)

Product fusion (banana-split law) Consider we have a list of integers, and we want to calculate its mean.
The mean of a list of numbers can be obtained by calculating the sum of the list and then dividing the sum by
the length of the list. In Haskell, the sum of a list of numbers is defined by sum operator. Equivalently, it can be
implemented by using catamorphism as

sumalg :: Num a => ListFr a a -> a
sumalg Nil = 0
sumalg (Cons a acc) = a + acc

sum' :: Num a => [a] -> a
sum' = cata sumalg

Similarly, the built-in function length can also be defined by a catamorphism, rendered as
lenalg :: ListFr a Int -> Int
lenalg Nil = 0
lenalg (Cons a acc) = 1 + acc

length' :: [a] -> Int
length' = cata lenalg

Given above two functions, we can define the function average by
average = uncurry div . (pair sum' length ')

where the function uncurry div calculate the division of a pair of values.
This naive implementation average traverse the input list twice, once for catamorphism sum', once for cata-

morphism length'. The astute reader may immediately realize that we can merge the two separate catamorphisms
together to form a single catamorphism. An obvious question to ask is, can we merge any two catamorphisms? The
answer is given in the lemma below.

Lemma 2. Product fusion law. Given any two algebras alg1 :: Functor func =>func a -> a and
alg2 :: Functor func =>func b -> b with the same base functor func, we have the following equality

pair (cata alg1) (cata alg2) = cata (prodalg alg1 alg2), (49)
where prodalg is defined as

prodalg alg1 alg2 = pair (alg1 . (fmap fst)) (alg2 . (fmap snd))

.

Proof. The proof is given in Bird and De Moor [1996], chapter 3.

66

In the study of constructive algorithmics, this is technique known as the banana-split law. The name banana-split
is because of the squiggly notations for catamorphisms. In literature, we often use the symbol LalgM to represent
catamorphism cata alg, the brackets L M are looks like bananas. We choose to call it product fusion law, due to its
intrinsic product fusion nature.

Applying the product fusion to the above example, we have the following average function by calling a single
catamorphism

average_prodalg = uncurry div . (cata (prodalg sumalg lenalg))
The algebra prodalg sumalg lenalg can also be defined explicitly as
sumlenalg :: Num a => ListFr a (a, Int) -> (a, Int)
sumlenalg Nil = (0,0)
sumlenalg (Cons a (b,n)) = (a + b, n + 1)

and evaluate uncurry div . (cata sumlenalg) is equivalent to evaluate
uncurry div . (cata (prodalg sumalg lenalg)).

In the context of combinatorial generation, if we want to generate combinatorial configurations for two (or
more) different combinatorial structures, the product fusion allows us to generate them by calling a single cata-
morphism. For instance, if we want to generate all sublists and permutations of a given list xs = [1,2], evalu-
ating cata (prodalg subsalg permsalg) xs gives us ([[],[2],[1],[1,2]],[[1,2],[2,1]]), the first element
[[],[2],[1],[1,2]] represents all sublists for list xs, and the second element [[1,2],[2,1]] represents are all
permutations for list xs.

Cross product fusion Our earlier two primitive constructions—filter fusion and product fusion—may seem lim-
ited in certain situations. In many cases, building more complex combinatorial structures demands fuse operations
that go beyond simple filtering or pairing. It is worth exploring whether we can fuse the cross product of any two
catamorphism generators. The answer is given below.
Lemma 3. Cross product fusion law. Given any two algebras alg1 :: func a -> a and alg2 :: func b -> b.
Assume function f :: a -> b -> c4 is a bijective function. Then we have following equality

uncurry (crp f) . (pair (cata alg1) (cata alg2)) = cata (crpalg alg1 alg2), (50)

where
crpalg alg1 alg2 = uncurry (crp f) . pair (alg1.(fmap fst)) (alg2.(fmap snd))) . (fmap (invcrp f)),
called cross product fusion algebra. In other words, the following diagram commute

([a], [b])

uncurry crp
��

func ([a], [b])
(prodalg alg1 alg2)oo

[c] func [c]
crpalg alg1 alg2

oo

fmap invcrp

OO

Intuitively, the above diagram means that applying crpalg alg1 alg2 to [c] is equivalent to: first recovering a pair
of lists ([a],[b]) such that their cross product is equal to [c], then calculate the result of alg1 (func [a])and
alg2 (func [b]) by applying prodalg alg1 alg2 to func ([a], [b]). Finally, we apply the cross product
operator again to ([a],[b]) to obtain the updated [c].
Proof. The cross product algebra crpalg can be derived as follows

uncurry (crp f) . (pair (cata alg1) (cata alg2)) = cata (crpalg alg1 alg2)
≡ product fusion law
uncurry (crp f) . cata (prodalg alg1 alg2) = cata (crpalg alg1 alg2)

≡ fusion law (43)
uncurry (crp f) . (prodalg alg1 alg2) = (crpalg alg1 alg2) . fmap (crp f)

≡ define invcrp f as the inverse of crp f
(crpalg alg1 alg2) = uncurry (crp f) . (prodalg alg1 alg2). fmap (invcrp f)

The function invcrp :: (a -> b -> c) -> [c] -> ([a], [b]) is the inverse of of the cross product function
crp, it receives a function f, and a list [c], which is the cross product of the pair ([a],[b]), and returns a pair
lists ([a],[b]).

67

Cartesian product fusion Let’s analyze cross product fusion in the simplest case: Cartesian product fusion. In
the previous section, the Cartesian product function cp was described as a special case of the cross product crp. It
can also be explicitly defined using a list comprehension cp x y = [(a, b) | a <- x, b <- y] where ',' has
the type ',' :: a -> b -> (a,b). By examining the construction order in the Haskell list comprehension, we
can define the inverse of the Cartesian product as follows:

invcp :: Eq a => [(a, a)] -> ([a], [a])
invcp xs = (nub (map fst xs), nub (map snd xs))

nub :: Eq a => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub (filter (/= x) xs)

This definition is heuristic, based on the construction ordering in Haskell list comprehensions. In other languages,
the function invcp might require a different definition. According to the result of Lemma 3, we have the Cartesian
product fusion algebra defined as

cpalg alg1 alg2 = (uncurry cp) . (pair (alg1.(fmap fst)) (alg2 . (fmap snd))) . (fmap invcp),
it makes the following diagram commute

([a], [b])

uncurry cp
��

func ([a], [b])
(prodalg alg1 alg2)oo

[(a,b)] func [(a,b)]
cpalg alg1 alg2

oo

fmap invcp

OO

In COPs, we often need to evaluate the objective value for each configuration incrementally in a recursive
program. This requires ’tupling’ each configuration with the input data sequence dataseqn to make evaluations
feasible. In other words, we need to compute cp dataseqn (gen dataseqn), where gen dataseqn generates all
possible configurations of the problem.

However, computing cp dataseqn . gen dataseqn directly is inefficient, as the generator gen dataseqnmay
produce an exponential number of configurations. If the generator gen is defined by a catamorphism, and since the
sequence can also be generated by a catamorphism, we can apply the Cartesian product fusion law to fuse these two
catamorphism generators. This allows us to apply the evaluation function eval to each configuration during the
recursive generation process, as every configuration is now tupled with the data sequence. Therefore, evaluation is al-
ways feasible when using a catamorphism generator. For instance, evaluating cata (cpalg subsalg seqnalg) [1,2],
which gives us [([],[1,2]),([2],[1,2]),([1],[1,2]),([1,2],[1,2])].

Similarly, evaluating cata (cpalg subsalg permsalg) [1,2] gives us
[([],[1,2]),([],[2,1]),([2],[1,2]),([2],[2,1]),([1],[1,2]),([1],[2,1]),([1,2],[1,2]),([1,2],[2,1])],
the Cartesian product for all sublists of [1,2] and all permutations of [1,2].

Furthermore, cpalg operator can be implemented more efficiently as

unit x = [x]
pairlist (f, g) = (uncurry cp) . pair (f.(fmap (unit.fst))) (g.(fmap (unit.snd)))

cpalg' alg1 alg2 = alg where
alg Nil = pairlist (alg1, alg2) Nil
alg (Single a) = pairlist (alg1, alg2) (Single a)
alg (Join x y) = concat (cpf (pairlist (alg1, alg2).(uncurry Join)) x y)

where cpf = [f (a, b) | a <- x, b <- y], which is the cross product applied to an uncurried function.
The efficiency improvement for the new Cartesian product fusion algebra here is because reversing a single

configuration, which is just a pair in a list of the Cartesian product pairs, is more efficient than reversing the results
of Cartesian product by using invcp. The equivalence between cpalg' and cpalg will be discussed in later section
after introducing (54) and the foundations of relational algebra theory in Section II.2.5.

Time-space trade-off in fused cross product generator From the above examples, we can see that using
cross product fusion allows us to construct efficient complex combinatorial generators easily. The efficiency is
significantly improved by the fusion law. For instance, if one combinatorial structure has M objects and another
has L objects, where M and L are usually exponentially large, constructing two generators separately and then

68

calculating their cross product will require at least O (M + L+ML) operations. In contrast, a fused program using
the cross product fusion law requires only O (ML) operations.

The main disadvantage of using a fused cross product generator is that it often consumes O (ML) space as well,
which is memory-intensive for most combinatorial objects. Therefore, when constructing the cross product of two
combinatorial generators, we must carefully navigate the time-space trade-off. There are two scenarios to consider:
If a filtering process is applied to the cross product of configurations, a significant proportion of configurations can
be eliminated during the recursive generation process when constructing a fused cross product generator.

In contrast, if no filtering process can be applied to the cross product configurations, it is better to run two
generators separately, as two separate generators only consume O (M +N) space, whereas a fused generator requires
O (ML) space. Therefore, identifying whether a filtering process can be applied to the fused configurations is crucial
in deciding whether to use a fused cross product generator or to run two generators separately and then compute
their cross product.

II.2.4 Structured recursion schemes
As introduced in Subsection I.2.3.3, there exists a zoo of recursive morphisms, each preserving certain properties
that ordinary catamorphisms do not. Due to limited space, and because some of these morphisms require extensive
knowledge of category theory to explain properly, we cannot introduce all of them in this thesis. Instead, we will
focus on two of them that are most relevant to our research, namely anamorphisms and hylomorphisms.

II.2.4.1 Anamorphism

Let F be an endofunctor from F : C → C. Dual to F-algebras alg :: func a -> a, a F-coalgebra has type
coalg :: a -> func a, in other words, the F-coalgebra wraps an object A in the context of F. We have seen one
example of F-coalgebra from the above discussion — the terminal coalgebra out :: Mu func -> func (Mu func).

Analogue homomorphisms in F-algebras, homomorphisms between two F-coalgebras coalg1 :: a -> func a
and coalg2 :: b -> func b, is defined by a morphism between their carrier h :: a -> b such that
coalg1 . h = (fmap h) . coalg2.

The catamorphisms is a homomorphism from the initial F-algebra to another F-algebra, an F-algebras
alg :: func a -> a can be thought as an evaluation step, which turns a data structure into a single value,
just like a monoid operation that turns two values with the same type to a single value. Dually, a F-coalgebra
coalg :: a -> func a can be thought of as generating a data structure from a seed. The idea of a coalgebra
is that you are given a seed and you use it to create a single level of a recursive data structure. This single-level
data structure is precisely described by a functor F, and the corecursive data structures related to F-coalgebras are
modeled by the greatest fixed point. Categorically, the greatest fixed point is denoted as νF. In Haskell (or any
SCPO categories more generally), the least fixed point µF and the greatest fixed point νF coincide [Hinze, 2013].
To avoid confusion, we will use µF in the math-style formula (and Mu in the Haskell function) to denote both the
least fixed point and the greatest fixed point.

Similar to the catamorphisms case, F-coalgebras and homomorphisms between them form a category coAlg (F).
A F-coalgebra is said to be a terminal F-coalgebra if it is a terminal object in category coAlg (F), denote as
out : FµF → µF , in Haskell it has a type out :: Mu func -> func (Mu func) (greatest fixed point νF is replaced
with the least fixed point µF for consistency). Dual to the algebra case, the fixed point for the terminal F-coalgebra
will correspond to the co-recursive/co-inductive datatypes. because the terminal F-coalgebra is the terminal object
in category coAlg (F), initiality implies that there exists a unique morphism from other coalgebras in coAlg (F)
to terminal F-coalgebra out. This unique homomorphism, called anamorphism, which is characterized by the
universal property out . (ana coalg) = fmap (ana coalg) . coalg. because out has an inverse In, induced
by the isomorphism between Mu func and func (Mu func). We can characterize the anamorphism as

ana coalg = In . fmap (ana coalg) . coalg, (51)

the type information is summarized in the following diagram

func (Mu func)

In
��

func a
fmap (ana coalg)oo

Mu func

out

OO

a
ana coalg

oo

coalg

OO

69

Similar to the catamorphism reflection law, it is easy to verify the anamorphism reflection law ana out = id.
In Haskell, we can implement anamorphisms as
ana :: Functor f => (a -> f a) -> a -> Mu f
ana coalg = In . fmap (ana coalg) . coalg

Perhaps the simplest corecursive datatype is the Stream datatype, i.e., the infinite list. It is defined similarly
to the finite list, but the nullary list constructor Nil is dropped. The Nil constructor, which enables recursion
termination, is absent. Hence, streams will never terminate. Categorically, the stream functor is defined as FA =
A × id. In Haskell, we can define stream functor as

data StreamF a x = Cons a x deriving (Functor, Show)

because the least and the greatest fixed points coincide in Haskell, the recursive definition Stream can be defined
by taking the fixed point of StreamF a functor, then the Stream datatype can be defined by the following types of
synonyms

type Stream a = Mu (StreamF a)

which is equivalent to
data Stream a = StreamF {hd::a, tl::(Stream a)} deriving Show

where the stream consists of two parts: the head, denoted by an element of type a, and the tail, represented by
another Stream a, which is infinitely long.

A simple example of anamorphism is the stream generator. In Haskell, we can generate an infinite list starting
with n by using syntax [n..]. We can implement a similar function intsFrom to generate a Stream of integers
starting from n

intfromalg :: Int -> (StreamF Int) Int
intfromalg a = Cons a (a+1)

intsFrom :: Int -> Stream Int
intsFrom n = ana intfromalg n

In order to print a stream, we convert a Stream to an (infinite) list by using a helper function that is defined as
toList :: Stream a -> [a]
toList (In (Cons x xs)) = x : toList xs

when evaluate toList (intsFrom 3) (lazily) generate an infinite list [3,4,5,6,7..].

II.2.4.2 Hylomorphism

Hylomorphism is a very powerful and generic recursive morphism, it subsumes almost all practical recursions,
including both structured and generative recursions, and almost all structured recursive schemes are special cases
of hylomorphism.

The definition of hylomorphism becomes straightforward once we understand what anamorphism and catamor-
phism are. Indeed, a hylomorphism is simply a composition of a catamorphism with an anamorphism
hylo alg coalg = (cata alg) . (ana coalg). In this definition, it is easy to verify that both catamorphism
cata alg and anamorphism ana coalg is a special case of hylomorphism, because the catamorphism and anamor-
phism reflection law cata In = ana out = id.

A hylomorphism can be also characterized as a least fixed point [Bird and De Moor, 1996]. Given a coalgebra
coalg :: a -> func a and an algebra alg :: func b -> b, we can implement a hylomorphism in Haskell as

hylo :: Functor func => (func b -> b) -> (a -> func a) -> (a -> b)
hylo alg coalg = alg . fmap (hylo alg coalg) . coalg

The hylomorphism is a morphism from hylo alg coalg :: a -> b that maps an coalgebra
coalg :: a -> func a to an algebra alg :: func a -> a such that

func a
fmap (hylo alg coalg)

// func b

alg
��

a

coalg

OO

hylo alg coalg // func b

70

commutes, where functor func is the base functor F of hylomorphism.
The commutative diagram of hylomorphism, as depicted in the above diagram, closely resembles that of cata-

morphism. Indeed, hylomorphism can be understood as a generalized form of catamorphism in the sense that the
terminal algebra out in catamorphism is substituted with a F-coalgebra. This substitution affords an extensive
degree of flexibility in program construction compared to catamorphism, where the F-coalgebra are restricted to be
the terminal algebra of the base functor.

However, the flexibility afforded by hylomorphism comes at a cost. Hylomorphism may not have a unique
solution. Even when both coalg and algebra alg are total functions, the hylomorphism hylo alg coalg may
not be total. In contrast, cata alg and ana coalg always total if alg and coalg are. Indeed the hylomorphism
hylo alg coalg has a unique solution if and if the coalg is a recursive coalgebra. In section II.2.4.4, we will clarify
the conditions under which coalgebras become recursive coalgebras.

Hylomorphisms can be understood as a recursive process that allows for arbitrary decomposition of a problem.
This definition of hylomorphisms clearly subsumes the classical definitions of dynamic programming (DP) and
divide-and-conquer (D&C) algorithms. In particular, DP algorithm is is a degenerate case of the hylomorphism,
as the original DP definition is grounded in SDP, corresponding to a sequential decomposition of the problem,
consuming one data point with each recursive call. Similarly, this definition is also more general than the classical
definition of the D&C method; we will elaborate on the differences shortly in the next subsection. Thus, we refer
to hylomorphisms as generalized divide-and-conquer (D&C).

One issue with using hylomorphisms is that, although we can define coalgebras and algebras as total functions,
the resulting hylomorphism may not be total. In contrast, catamorphisms and anamorphisms are always total if
their respective algebras and coalgebras are total. To address this issue, Hinze et al. [2015] propose a simple toolbox
for constructing recursive coalgebras, which, by definition, guarantee that hylomorphisms have unique solutions,
regardless of the algebra.

II.2.4.3 Hylomorphisms and divide-and-conquer algorithms

Our definition of the generalized D&C method given above differs from the classical definition found in typical
algorithm design textbooks [Kleinberg and Tardos, 2006, Cormen et al., 2022].

Traditionally, ordinary D&C algorithms are characterized by recursively decomposing problems into two equal
halves, such that the merged solutions of disjoint subsets are also disjoint—that is, they do not share subsolutions.
This disjoint property is often omitted in classical algorithm design books, yet it is an implicit feature present
in all D&C algorithms. We make it explicit here, as we consider it a defining feature distinguishing D&C from
dynamic programming. Classical examples include the mergesort and quicksort algorithms. By employing this
binary subdivision strategy, D&C typically achieves logarithmic speed-up.

Therefore, our definition of the generalized D&C method given subsumes the classical one, as it allows for
arbitrary subdivisions and shared subsolutions. More precisely, our definition of the D&C is equal to the traditional
definition of the D&C when the intermediate datatype in hylomorphism has a recursive structure similar to the
binary tree, such as join-list datatype or binary tree datatype that we mentioned in Subsection II.2.2.5.

In this section, we will further explore the connection between hylomorphisms and the divide-and-conquer
method by analyzing two classical divide-and-conquer algorithms, the mergesort and the quicksort algorithms, and
characterizing them in terms of hylomorphisms.

Mergesort algorithm The mergesort algorithm is often considered the archetypal D&C algorithm, utilized for
sorting a list of elements into a specified order. The mergesort comprises two fundamental steps:

1. Recursively splitting: Divide the unsorted list recursively into two equal halves until each sublist consists
of singleton lists.

2. Recursively merging: Merge the sublists recursively to generate new sorted sublists until only one element
remains.

In Haskell, the mergesort algorithm can be implemented as

mergeSort ' :: Ord a => [a] -> [a]
mergeSort ' [] = []
mergeSort ' [a] = [a]
mergeSort ' x = merge (mergeSort ' l) (mergeSort ' r)

where (l, r) = splitAt (length x `div` 2) x

71

where the function splitAt split the list x into two equal halves, and the merge operation is defined as
merge :: Ord a => [a] -> [a] -> [a]
merge [] m = m
merge n [] = n
merge (x:xs) (y:ys)

| x <= y = x : merge xs (y:ys)
| otherwise = y : merge (x:xs) ys

the mergesort algorithm has worst-case time complexity O (N logN) for a length N list.
The definition of the mergesort algorithm consists of three pattern matchings, the empty list pattern, the

singleton pattern and a third pattern that recursively splits the input list x into two parts, l and r. This immediately
brings to mind the join-list datatype. Indeed, the join-list functor ListFj a can serve as the base functor for the
mergesort algorithm using hylomorphism.

The ListFj a-coalgebra of the hylomorphism corresponds to a one-step decomposition process. Here we subdi-
vide the unsorted list into two equal halves and store them in the intermediate datatype

split :: [a] -> (ListF a [a])
split [] = Nil
split [x] = Single x
split xs = Join l r where

(l, r) = splitAt (length xs `div` 2) xs

the two partitioned lists l and r are stored in the value constructor Join of the join-list functor, while the singletons
and empties are stored in their corresponding value constructors.

The ListFj a-algebra used in hylomorphism corresponds to the recombine stage in the recursion which is
implemented by

mcombine :: Ord a => ListF a [a] -> [a]
mcombine Nil = []
mcombine (Single x) = [x]
mcombine (Join l r) = merge l r

where the third pattern of ListFj a-algebra matches to the to value Join l r, representing the operation that
merges two ordered list l and r.

Combining the ListFj a-coalgebra and ListFj a-algebra above, we can redefine the mergesort algorithm as
mergeSort :: Ord a => [a] -> [a]
mergeSort = hylo mcombine split

It is straightforward to observe how the structure of computing mergesort is manifested in the definition of
mergeSort in terms of hylomorphism. The problem is initially decomposed by ListFj a-coalgebra split, then
solved by hylo, and finally, the solutions are recombined by ListFj a-algebra mcombine.

Quicksort algorithm The quicksort algorithm shares a nearly identical decomposition structure with mergesort
and has also gained widespread acceptance as a D&C algorithm. The quicksort algorithm consists of three essential
steps:

1. Pivot selection and recursive partitioning: Select a random pivot element and partition the unordered
list into two sublists. One sublist contains elements smaller than the pivot element, while the other sublist
contains elements greater than the pivot element. Repeatedly apply this process to each new sublist until the
new sublists are ordered.

2. Concatenation: Concatenate all ordered sublists together to obtain the final ordered list solution.

In Haskell, quickSort' algorithm can be implemented as
qucikSort ' :: Ord a => [a] -> [a]
qucikSort ' [] = []
qucikSort ' (a:x) = (qucikSort ' l) ++ [a] ++ (qucikSort ' r)

where
l =[b | b <- x,b < a]
r =[b | b <- x,b >= a]

72

In the quicksort algorithm, a pivot element is selected from the input list and the remaining elements are
partitioned into two sublists. One way to understand this partition is that the pivot element becomes the root node
of the tree, and there are two associated subtrees connected to the root node, this naturally gives us a subdivision
that is similar to the binary tree datatype that we defined in the Section II.2.2.5, where the second value constructor
Node x a x has the same structure as the partition process of the quicksort algorithm.

Indeed, the base functor for the hylomorphism implementation of the quicksort algorithm is precisely the binary
tree functor BtreeF a. The BtreeF a-coalgebra corresponds to the subdivision stage, which can be defined as

partition :: Ord a => [a] -> BtreeF a [a]
partition [] = Empty
partition (a:x) = Node [b | b <- x, b < a] a [b | b <- x, b >= a]

At the same time, since the combining step in the quicksort algorithm is just the list concatenation operation.
The BtreeF a-algebra for quicksort algorithm can be defined as

qcombine :: BtreeF a [a] -> [a]
qcombine Empty =[]
qcombine (Node l a r) = l ++ [a] ++ r

By combining the BtreeF a-algebra and the BtreeF a-coalgebra together, we obtain the hylomorphism imple-
mentation for the quicksort algorithm is rendered as

qucikSort :: Ord a => [a] -> [a]
qucikSort = hylo qcombine partition

Implication of the hylomorphism Astute readers may notice that the definition of quickSort' algorithm
consists of two patterns, whereas the definition of mergeSort' algorithm consists of three patterns. This discrepancy
is not coincidental, it arises from the fact that the hylomorphism for constructing the mergeSort algorithm is based
on the join-list functor ListFj a, which is defined by three value constructors. In contrast, the hylomorphism for
constructing the quickSort algorithm is based on the binary tree functor BtreeF a, which is defined by two value
constructors. This observation strongly indicates that the hylomorphism reflects the structure of the decomposition.

Indeed, the classical definition of a divide-and-conquer algorithm is precisely when the intermediate data type in
a hylomorphism exhibits a binary split structure. For example, in the cases discussed, the intermediate datatypes are
join-list and binary tree, both of which have functors with constructors that include two free fields x. However, the
utility of hylomorphisms extends beyond binary-tree-like datatypes. Hylomorphisms can be applied to intermediate
datatypes such as ternary trees, quaternary trees etc.

II.2.4.4 Recursive coalgebras

Hylomorphism can be understood as a three phrases program: First step a problem is divided into sub-problems
by the F-coalgebra, where F is the base functor; Second, sub-problems are solved recursively and independently to
form sub-solutions; Finally, these sub-solutions are combined together to form the complete solutions of the original
problem.

The recursive structure of hylomorphism is determined by the base functor F. Depending on the shape of base
functor F, hylomorphisms can capture various constructs such as while-loops, and divide-and-conquer schemes. In
fact, any practical program can be cast into a hylomorphism form [Hu et al., 1996].

As mentioned earlier, the generality of hylomorphisms can lead to solutions that are either non-unique or not well-
defined. Although we have mentioned that Hinze et al. [2015] proposed a toolbox for assembling recursive coalgebras
by identifying the conjugate rule, a full explanation for their theory involves many highly abstract categorical ideas
such as adjunction and conjugate, which are very hard to explain or give a concrete Haskell example in limited
space. This thesis aims to present a semi-tutorial explanation regarding constructive algorithmics to a wide range
of audience. We think it is better to establish a few simple conditions that can help readers quickly understand and
reuse them in the future.

To ensure the well-definedness of a hylomorphism hylo alg coalg, one can either concentrate on devising
recursive coalgebras to guarantee unique solutions for any algebras, or alternatively, explore corecursive algebras to
ensure uniqueness for any coalgebras. This thesis specifically emphasizes the development of recursive coalgebras,
leaving the construction of corecursive algebras to be addressed dually.

Definition 13. Recursive coalgebras. Given a base functor func, a coalgebra coalg :: a -> func a is called
recursive if for every algebra alg :: func b -> b there is a unique hylomorphism hylo alg coalg :: a -> b.

73

The existence of recursive coalgebra provides another kind of initiality, and the category of recursive coalgebras
rec (F) forms a subcategory of the category of coalgebras coalg (F). The notion of recursive coalgebras generalizes
the terminal algebras insofar as structured recursion is concerned. In many applications, we need more than
initial algebra to solve a problem, as we can see in the above mergesort and quicksort algorithms, both split and
partition are not terminal coalgebras. We believe that the recursive coalgebras are a more useful tool in the study
of structured recursion than initiality, and that most results for structured recursion and initial algebras can be
recast in a clearer way in this more general framework.

We have the following two simple facts for constructing recursive coalgebras.

Fact 1. If an endofunctor F has an initial algebra in, the inverse of the initial algebra is a terminal recursive
coalgebra, for instance, in catamorphism the terminal algebra out is also a recursive coalgebra.

This observation is easily comprehensible given our previous understanding that catamorphisms possess unique
solutions. This aspect provides a clearer explanation as to why initiality guarantees the uniqueness of the catamor-
phism.

Fact 2. For a base functor F, if the category coalg (F) has a terminal F-coalgebra out, if there exists an anamorphism
from F-coalgebra coalg to out.

The fact 2 comes from a more general result of Capretta et al. [2006], proposition 8. It states that if m :: b -> a
is a split monic coalgebra morphism from a coalg :: b -> func b to a recursive coalgebra rcoalg :: a -> func a,
then coalg is also a recursive coalgebra. A split morphism is defined as a morphism with a left-inverse. Conse-
quently, Fact 2 naturally emerges as a specific instance, since every anamorphism has a left-inverse, which is a
catamorphism.

This explains why the coalgebras split and partition in mergesort and quick sort algorithm has a unique
solution, because they are BtreeF-coalgebras, and the category of coalg (BtreeF) has a terminal F-coalgebra out.

II.2.5 Foundations for the algebra of programming
As we mentioned, the theory of the algebra of programming is a generalization of the Bird-Meertens formalism
from total functions to relations. Before we go into details about the theory, we will illustrate a few foundational
concepts for understanding the algebra of programming theory.

II.2.5.1 Motivations for using relational algebra

In the classical Bird-Meertens formalism, it only involves total functions [Bird, 1987, Meertens, 1986]. However,
when it comes to program derivation, generalizing total functions to relations appears to be indispensable, offering
significant advantages in the following aspects:

1. Model of nondeterminism: In many cases of program derivation, non-deterministic functions are required,
and relying solely on total functions is too restrictive. For example, in optimization problems, there is often
more than one optimal solution. Modeling this nondeterminism using relations is much simpler than using
set-valued total functions.

2. Ease of structuring certain proofs: There are deterministic programming problems (functions) where it
is helpful to consider non-deterministic programs (relations) in passing from specification to implementations.
While not all functions have an inverse, all relations have a converse.

3. Necessity in defining specifications: All programs are total functions [Hoare and He, 1987], but programs
are only a proper subset of specifications. This is because certain relations necessary for defining a specifica-
tion cannot be implemented as computable programs. For instance, the complement relation is a valid and
reasonable relation for specifications but is not executable. Similarly, in our context, sublist and permutation
generators are total functions, but determining whether a list is a sublist or permutation of another list is a
relation.

II.2.5.2 Definition of relation

A relation can be interpreted as a Boolean-valued function or a non-deterministic mapping. Unlike functions, every
relation has a converse, and we denote the converse of the relation by using a superscript ◦. For instance, the
converse of a relation r a b can be defined as r◦ a b = r b a.

The Boolean-valued function in Haskell can be defined as

74

type Rel a b = a -> b -> Bool
Compared with defining a relation as a non-deterministic mapping, interpreting a relation as a Boolean-

valued function has a significant shortcoming in implementation: a Boolean-valued function cannot capture non-
deterministic behavior. Specifically, we want to give an input a to relation r, and r a will return all bs such that
r a b == True.

We cannot define a non-deterministic function in Haskell. Instead, when necessary, we will represent non-
deterministic functions using pseudo-Haskell code. The non-deterministic outputs of a relation are expressed using
logical or. For instance, r a = b or c means relation r can output b or c.

Two relations r :: Rel a b and s :: Rel a b with the same input and output type can be compared, the
inclusion relation is analogous to set inclusion; thus,

r ⊆ s ⇐⇒ (∀a, b : r a b =⇒ s a b) . (52)

A preorder is a reflexive (r a a for all a) and transitive (r a b && r b c implies r a c for all a) relation. A
partial order is a preorder with anti-symmetric property (r a b && r b a implies a = b). A partial order is a
linear/total order if r a b or r b a exists for all a and b.

For illustration, the well-known lesser, greater and equal relation can be defined as
leq :: Ord a => Rel a a
leq a b = a <= b

geq :: Ord a => Rel a a
geq a b = a >= b

eq :: Ord a => Rel a a
eq a b = a == b

II.2.5.3 Reformulate the combinatorial optimization problem specification

As we have explained in Section II.2.3, any COP can be specified through the exhaustive search paradigm, which
can be re-formulated in Haskell as

sel r . filter p . (map eval) . (cp dataseqn) . gen
There is an additional operation cp dataseqn :: [Comb] -> [(Comb, Seqn)], the Cartesian product
cp dataseqn tuples every combinatorial configuration with the input data sequence dataseqn. This process

allows evaluation fusion feasible, we can evaluate the objective function for each tuple with respect to a sequence
of data dataseqn by applying eval :: (Comb, Seqn) -> Config to each tuple in [(Comb, Seqn)].

Typically, the generator gen is expressed as a catamorphism, and we have seen various combinatorial generators
based on catamorphism in Section II.2.3. If a predicate p is prefixed-close, the filtering and evaluation processes
are integrated into the generator, a COP can be specified using catamorphism as

sel r . cata alg
where algebra alg represents the algebra obtained from the fusion of the filtering and evaluation processes.

In more general settings, when we need to decompose a problem using a coalgebra coalg, then the generator
gen can be specified as a hylomorphism. Consequently, the COP can be expressed in a sophisticated form through
hylomorphism.

sel r . hylo alg coalg
As we explained in the Section I.2.1 of Part I, a selector is typically used to choose a configuration with minimal

objective error (cost). Without loss of generality, the selector can be considered as a selection process with respect
to a relation r, which is a total order of the form cost◦. leq . cost, where the cost function calculates the
objective values of a configuration. Therefore, in Haskell, we can define the selector over the list as

minlist :: (Rel a a) -> [a] -> a
minlist r [a] = a
minlist r (a:xs) = f a (minlist r xs)

where f a b = if r a b then a else b
which selects the minimal element in a list with respect to the preorder r. We will always denote the preorder used
in selector sel as the lowercase letter r, referred to as the selector relation.

75

n=0

n=1

n=2

n=3

n=4

algR 𝛬algRalg

Figure II.2.1: The difference between functional algebra alg (purple), relational algebra algR (red), and the
power transpose of the relational algebra ΛalgR (blue) in the context of the sequential decision process (cata-
morphism over cons-list datatype). The arrows in red boxes represent possible mappings of the relational algebra
algR :: func a -> a. In this case, it has two possibilities (two decision functions). The power transpose of the re-
lational algebra ΛalgR:: func a -> [a] maps a configuration to all possible outcomes of algR and then stores them
in a list. Subsequently, the functional algebra alg applies a list of decision functions to a list of partial configurations
and stores the updated results.

II.2.5.4 Relational F-algebras

Relational F-algebras/coalgebras Before discussing more general results, we need to distinguish the difference
between relational F-algebras (algR) and functional F-algebras (alg). All algebras that we have seen before are
functional F-algebras. Introducing relational F-algebras will allow us to reason programs more easily. The identity
between relational F-algebras and functional F-algebras was first exploited by Eilenberg and Wright [1967] to reason
about the equivalence between deterministic and non-deterministic automata in the context of set theory. For this
reason, Bird and De Moor [1996] named the identity between functional F-algebras and relational F-algebra as the
Eilenberg-Wright lemma.

In our discussion here, for the ease of understanding, we leave the identity between functional algebra and
relational algebra implicitly, and assume the relational F-algebras and functional F-algebras are connected to each
other by two functions τ and τ−1 such that τ (algR) = alg and τ−1 (alg) = algR. The definitions of functional
F-algebras and relational F-algebras are defined as follows.

Definition 14. Functional F-algebra and relational F-algebra. Denote base functor F as func. Given a functional
algebra alg :: func [a] -> [a], its corresponding relational algebra has a type algR :: func a -> a, such
that τ (algR) = alg and τ−1 (alg) = algR.

Similarly, we can define the functional F-coalgebra and relational F-coalgebra in the same style as follows.

Definition 15. Functional F-coalgebra and relational F-coalgebra. Denote base functor F as func. Given a
functional coalgebra
coalg :: [a] -> func [a], its corresponding relational algebra is defined as coalgR :: a -> func a , such
that ξ (coalgR) = coalg and ξ−1 (coalg) = coalgR.

In the context of SDP, the distinctions between relational algebra and functional algebra are depicted in Fig.
II.2.1. A relational catamorphism cata algR is a catamorphism based on a relational algebra
algR :: func Config -> Config. In every recursive step, algR updates a single partial configuration Config by
choosing one decision function from a list of possible decision functions. This results in only one partial configuration
at each stage of recursion. In contrast, the corresponding functional algebra alg :: [Config] -> [Config] applies
all decision functions to the partial configurations generated in the previous stage.

76

Power transpose In the study of relational algebras, there exists a very important operator Λ, called power
transpose, which takes a relation r :: a -> b and returns a function Λr :: a -> [b]. We can define it by list
comprehension

Λr a = [b | b <- (r a b == True)], (53)
it means that Λr a returns all b such that r a b == True and store all bs in a list. The list comprehension here is
defined as a pseudo-Haskell code style, as the relation r here is a non-deterministic function. When we implement
the power transpose of a relation Λr in Haskell, we denote it as r_pt.

There is a subtle difference we need to care about. Given a relational algebra algR, the functional algebra
alg :: func [a] -> [a] is different with ΛalgR :: func a -> [a], despite both being functions. As depicted
in Fig. II.2.1, alg :: func [a] -> [a] means apply all decision functions to all configurations generated in the
previous stage, whereas ΛalgR :: func a -> [a] applies all decision functions to one configuration generated
in the previous stage. Note, because symbol Λ can not be implemented in Haskell, we use algR_pt (short for
“relational algebra, power transpose”) to denote ΛalgR , whenever we need to implement the power transpose of a
relational algebra in Haskell.

Indeed, these two functions (alg and algR_pt) are associated by equality

concat . map (ΛalgR . (Cons a)) = alg . (Cons a), (54)

over the cons-list catamorphism. The intuition behind this equality lies in the fact that a functional algebra
alg . (Cons a):: [a] -> [a] updates all configurations in a list of configurations xs :: [a] by parameteriz-
ing alg :: func [a] -> [a] with Cons a :: ListFr a. In contrast, the power transpose of a relational alge-
bra ΛalgR :: func a -> [a] can only update a single configuration. To address this, we parameterize it with
Cons a :: ListFr a and apply it to all configurations in xs using the map function. This process has the type
map (ΛalgR . (Cons a)) :: [a] -> [[a]]. Finally, we apply the concat function, which removes the inner
brackets and transforms the list of lists into a single list. The correctness of equality (54) can be generalized to
other base functors as well. However, we focus on the cons-list functor for ease of understanding.

More generally, given a base functor F, we have

concat . P (ΛalgR . F) = alg . F, (55)

where the map function is replaced by the power functor P and Cons a is replaced with the datatype constructor
(functor on objects) F. In the case where the base functor corresponds to the join-list datatype, it can be shown
that the power functor P is equivalent to the cross product operator. This equivalence explains why the Cartesian
product fusion algebra cpalg' is equivalent to cpalg. The pairlist operator used to define cpalg' serves as the
power transpose of the relational version of cpalg. In other words, cpalg = ΛcpalgR, where cpalgR represents
the relational version of cpalg.

The proof for equality (54) involves several unnecessary definitions in relational algebras that will not be used
elsewhere, so we have placed the proof in Corollary 5 in the appendix.

Defining a combinatorial optimization problem through relation We have seen how to specify a COP
through hylomorphism in the previous section where the algebras and coalgebras are functional. Given a relational
algebra algR :: func a -> a, and a relational coalgebra algR :: func a -> a, a COP can be specified through
a relational hylomorphism as

sel r . Λ(hylo algR coalgR), (56)
where Λ(hylo algR coalgR) = hylo alg coalg.

Similarly, a COP can also be specified through a relational catamorphism as

sel r . Λ(cata algR), (57)

where Λ(cata algR) = cata alg.

II.2.5.5 Monotonic algebras

The monotonic algebra is an abstraction and generalization of Bellman’s principle of optimality, and it is one of
the most important properties in constructing efficient recursive optimization programs. By definition, an algebra
algR :: func a -> a is monotonic on a relation rel :: a -> a if

algR . (fmap rel) ⊆ rel . algR. (58)

77

Example 3. Sequential decision process. For combinatorial optimization algorithms based on SDPs,
algR :: func Config -> Config can be considered as a single decision function. The condition of (58) states
that if a is a predecessor of configuration a', i.e., a' = alg (func a), then rel a b implies that rel a' b', where
b' = alg (func b). Indeed, in the context of SDP, the monotonicity condition in (58) can be simplified to the
following

rel a b ⊆ rel a' b', (59)

which aligns precisely with the classical definition of monotonicity in existing literature [Ibaraki, 1977, Karp and
Held, 1967], and the abstraction (58) takes a much more abstract and generic form.

Example 4. Universal algebras. Consider the base functor Sqr, which represents the squared functor. We previ-
ously defined an algebra plus :: Double -> Double -> Double (or equivalently plus :: Sqr Double -> Double).
This algebra is monotonic with respect to relation leq, which can be expressed as plus . (fmap leq) ⊆ leq . plus.
At the point-wise level, this monotonicity can be understood as c = a + b ∧ a ≤ a' ∧ b ≤ b' =⇒ c ≤ a' + b',
where + and ≤ is the infix notation of plus and leq.

When algR is a function, we denoted it as algRf, the monotonicity has two useful facts.

Fact 3. When algR is a function, we can prove that alg is monotonic on R if and only if it is monotonic on R◦ .

Fact 4. When algR is a function, the monotonicity is equivalent to the distributivity. We say algR distributes over
r if

algR . min r ⊆ sel r . alg, (60)

For instance, plus distributes over leq can be interpreted point-wise as
min x + min y = min [a + b | a <- x, b <- y].

II.2.6 Thinning
The thinning algorithm has often been called dominance relation in many algorithm design literature [Ibaraki, 1977,
Galil and Giancarlo, 1989, Eppstein et al., 1992]. The use of thinning or dominance relation is concerned with
improving the time complexity of naive dynamic programming algorithms. In the discussion here, we characterize
the thinning algorithm by parameterizing it with a dominance relation.

The thinning technique explores the fundamental fact that certain partial configurations are superior to others,
and it is a waste of computational resources to extend these non-optimal partial configurations. When employing
the thinning algorithm to accelerate a recursive optimization algorithm, two extremes exist. At one end of the
spectrum, all non-optimal partial configurations are discarded, leaving only a single partial configuration to be
maintained at each recursive stage. This condition is known as the greedy condition. This condition characterizes
situations where a problem can be solved using a greedy algorithm.

On the opposite end, maintaining all possible partial configurations at each stage leads to a brute-force enu-
meration algorithm Between the two extremes of one and all, there is a third possibility: in each recursive stage, a
collection of representative partial configurations is selected, namely those that might eventually be extended to an
optimal solution, while all other partial configurations that cannot lead to optimal solutions are deleted from the
candidate list.

Discovering dominance relations is often challenging and requires insightful observations about the problem.
To address this issue, we introduce two generic dominance relations: the global upper bound and the finite domi-
nance relation. These two dominance relations are widely applicable to many machine learning or combinatorial
optimization problems where easily accessible approximate algorithms are available and possess only finite data.

II.2.6.1 What is thinning

In this Subsection, we will characterize the theorems and corollaries of the thinning technique, which are formalized
by Bird and De Moor [1996]. Following this, we will expand upon the discussion regarding the connection between
the greedy condition in the thinning theorem and the greedy condition in matroid theory. The latter is the widely
accepted conventional characterization of the greedy algorithm

78

Thin-introduction rule Given a dominance relation domR :: a -> a (short for “dominance relation”), and a
candidate list x :: [a], the thinning relation thin domR :: [a] -> [a] select a sublist y from lists x such that
all elements of x have a lower bound under dominance relation domR in y. It is evident from the definition that the
dominance relation domR should be a preorder such that domR ⊆ r, otherwise applying thinning operation is the
same as applying sel r directly.

We can introduce the thinning relation into an optimization problem with the following thin-introduction rule

sel r = sel r . thin domR, (61)

this rule states that the optimal configuration is selected by thin domR first, and then min r should consist of the
optimal solution selected by min r.

The dominance relation domR in thinning requires to be a preorder, t, which allows us to utilize transitivity. If
a dominate b, and b dominate c we have a dominate c. In practice, this enables us to only consider configurations
that are “most likely” dominate others, if a is not dominate c and a dominate b, then b is impossible to dominate
c, comparing b and c is a waste of time.

Thinning theorem

Theorem 1. Thinning theorem. Given a base functor func. If algR :: func a -> a is monotonic on domR◦,
then we have following implication

sel r . (cata ((thin domR). alg)) ⊆ sel r . Λ(cata algR). (62)

The thinning theorem 1 states that solutions returned by the thinning algorithm (left-hand side of the inclusion
(62)) are also solutions of the brute-force algorithm (right-hand side of the inclusion (62)). It immediately follows
from the theorem that the thinning algorithm becomes a brute-force algorithm—the inclusion (62) becomes an
identity—if domR == id.

The greedy algorithm is then be characterized by the following corollary.

Theorem 2. Greedy theorem. A COP specified in the form of (57), if and only if algR is monotonic on r◦. Then
we have

cata (sel r . ΛalgR)) ⊆ sel r . Λ(cata algR). (63)

where cata (sel r . ΛalgR)) is the specification of the greedy algorithm

It is straightforward to observe that Thm. 2 can be regarded as a special case of Thm. 1 when domR = r,
according to the thin-introduction rule (61). However, applying this corollary in practice can be challenging, as
it necessitates the prior definition of the relational algebra algR. In contrast, the subsequent theorem is generally
more straightforward to apply.

Corollary 2. Greedy theorem variant. A COP specified in the form of (57), if f is monotonic on r◦, such that
f ⊆ sel r . ΛalgR. Then we have

cata f ⊆ sel r . Λ(cata algR) (64)

In the context of SDP, the function f in Corollary 2 can be understood as the best decision function with respect
to the objective in choice function list ΛalgR. Diagrammatically, in Fig. II.2.1, the function f represents the best
(in terms of objective values) arrow within a red box, located inside the blue box.

For the maximization problem involving max rather than min, we can just replace the monotonic condition on
r◦ with r. In practice, this greedy condition is very easy to verify when the COP is specified as a SDP, all we need
to do is to check if the decision functions are monotonic on r◦, which is usually the preorder with respect to the
objective function.

Compared with the classical greedy condition where the problem requires finding a matroid [Schrijver et al.,
2003]. This is almost as hard as finding a greedy algorithm directly. In contrast, our characterization is significantly
simpler, more concise, and much easier to verify in practice. We will next explore how these two characterizations
of the greedy condition are related to each other.

79

Greedy algorithm and matroid theory The matroid theory was introduced to generalize the idea of linear
independence in linear algebra [WHITNEY, 1935], and develops a fruitful theory from certain axioms which it
demands hold for this collection of independent sets. Matroid theory has exactly the same relationship to linear
algebra as does point set topology to the theory of real variables [Welsh, 2010].

A pair M = (S, I) is called a matroid if S is a finite set and I is a nonempty collection of subsets of S satisfying:

1. if I ∈ I and J ⊆ I, then J ∈ I

2. if I, J ∈ I and |I| < |J |, then I + z ∈ I for some z ∈ J\I

and I is called an independent set if I ∈ I, and dependent set otherwise.
In the context of matroid theory, the greedy algorithm is characterized by the following theorem Schrijver et al.

[2003].

Theorem 3. Greedy theorem in matroid. Let I be a nonempty collection of subsets of a finite set S closed under
taking subsets. For any weight functionw : S → R we want to select a set I in I minimizing w (I). The greedy
algorithm consists of setting I := ∅, and next repeatedly choosing y ∈ S\I such that I ∪ y ∈ I and w (I ∪ y) as
small as possible. We stop if no such y exists. The greedy algorithm leads to a set I in I of minimal weight w (I)
if and only if (S, I) is a matroid.

Corollary 3. An exhaustive specification through catamorphism (57) introduces a matroid. If the algebra algR of
it satisfies the greedy condition given in Thm. 2, then the resulting greedy algorithm of Thm. 2 is a valid greedy
algorithm in matroid.

Proof. We first show that any exhaustive specification through catamorphism (57) introduces a matroid, and then
prove that the greedy algorithms given by Thm. 2 also satisfy the Matroid greedy theorem.

Define ISDP = S ∪ S ′ as the union of the set of all possible configurations S and set all partial configurations
S ′. By partial configurations, we mean, applying finite times of algebra algR to a partial configuration a' ∈ S ′,
then a ∈ S such that a = algR func (.. algR (func a')). Given ISDP consists of all possible configurations S
and set all partial configurations S ′, it thus the first condition of the matroid is satisfied. If a' ∈ S ′ is a partial
configuration, assume b' = algR (func a'), then b' is either a partial configuration or a complete configuration.
Defining |a'|as the number of times we need to apply algR to obtain a' from empty, thus |b'| ≥ |a'|. Therefore,
the second condition of the matroid is satisfied. Hence ISDP is a independent set of the matroid MSDP = (S, ISDP),
where S is the input list.

Our greedy algorithm cata (sel r . ΛalgR)) is the same as illustrating that the greedy algorithm consists
of setting I := ∅, and next repeatedly choosing y ∈ S\I with I ∪ y ∈ ISDP and with w (I ∪ y) as small as possible.

To demonstrate this, a symbolic way to describe repeat selection process in matroid greedy algorithm is rendered
as

y = argmin
y∈S\I

w (I ∪ y) . (65)

In our framework, the catamorphism cata (sel r . ΛalgR)) recursively applies the algebra (sel r . ΛalgR)
starting from the base case Nil, which corresponds to the empty set I := ∅ in matroid theory. Similarly, the update
function I∪y in matroid theory corresponds to our definition of the decision function algR func I = algR (Cons y I)
over the cons-list datatype. However, instead of selecting the smallest I ∪ y such that y ∈ S\I, we select the best
decision function with respect to a preorder r by sel r . ΛalgR. These two processes are equivalent because the
cons-list catamorphism iterates over the input list from right to left, visiting each element exactly once.

Since ISDP is an independent set of the matroid MSDP = (S, ISDP), then cata (sel r . ΛalgR)) is a valid
greedy algorithm

The key distinctions between the classical greedy theorem in matroid theory and our characterization lie in both
the formulation of the greedy algorithm and the definition of “independence.” In our approach, the greedy algorithm
is unambiguously specified through an SDP (catamorphism), whereas in matroid theory, the greedy algorithm is
characterized through an algorithmic description. Selecting the best decision function f is the same as the selection
procedure of the greedy algorithm in matroid theory, where we choose a w (y) as small as possible. Additionally,
in the matroid greedy theorem, “independence” is characterized by the matroid, while in our characterization,
independence is an inherent property of the SDP formulation itself.

Given these distinctions, we believe that the greedy theorem presented in Thm. 2 is based on a clearer and
more rigorous problem specification. This increased clarity allows for a deeper understanding of the essence of the
greedy algorithm, making its derivation easier and more systematic.

80

II.2.6.2 Different implementations of thinning

In this Subsection, we will discuss how to implement the thinning algorithm in practice. The naive perfect thinning
algorithm requires comparing all pairs of configurations, thus O

(
M2
)

computations in the number of evaluations
of dominance relation rel are required, where M is the size of partial configurations which is usually exponential-
ly/polynomially large. By perfect, we mean all dominated partial configurations are purged.

Certainly, the naive approach is impractical in practice. The ideal implementation of the thinning algorithm
should be a linear-time program—linear with respect to the number of partial configurations—that produces the
shortest possible result by eliminating as many partial configurations as possible. However, a linear-time program
does not always guarantee the shortest result. Achieving both goals at the same time is a paradox in itself because
deleting more partial configurations means that we need to evaluate the dominance relation more frequently.

In practice, we need to balance the time taken to run the thinning algorithm and the number of configurations
that can be deleted by invoking this algorithm This Subsection provides various implementations of the thinning
algorithm in Haskell, and the speed-up brought by running these different implementations should depend on the
problem at hand.

As an example, given a list of elements l = [1,2,3,4,5] we define a preorder

relList = [(2, 5), (1, 2), (2, 3), (3, 2), (1, 3), (1,5)]
rel a b = (a, b) `elem` relList

if element (a, b) exists in list relList means rel a b == True. In this case, we assume the preorder rel is a
partial order, i.e., it has anti-symmetric property, otherwise thinning may have non-unique solutions. The value
4 is not comparable with other elements in l, and the optimal thinning of l with respect to preorder rel a b is
[1,4].

Exhaustive thinning Exhaustive thinning requires comparing all pairs of elements in the input list x :: [a].
One way to implement the exhaustive thinning function is by the following logic: we use the first element a of the
input list l to compare with all elements in the remaining list x (l = [a] ++ x), when rel a b == True we delete
b from x, and whenever rel b a == True, we stop comparing and delete a from l. Then we recursively apply this
process to x', where x' is the list by deleting all bs from x such that rel a b == True. This idea is formalized in
the definition

del :: Eq a => [a] -> [a] -> [a]
del x y = [a | a <- x, not (a `elem` y)]

thin_exh :: Eq a => Rel a a -> [a] -> [a]
thin_exh rel [] = []
thin_exh rel [a] = [a]
thin_exh rel l@(a:x) = (h a x) ++ thin_exh rel x'

where
h a x

| all (\b -> not (rel b a)) x = [a]
| otherwise = []

x' = x `del` [b | b <- x, rel a b]

where @ create an alias l for pattern (a:x), it meaning l = [a] ++ x, the function h a x checks if the head
element a of list l is dominated – rel b a == True – by any elements b in x, if not, we retain a in the front of the
list l , otherwise we delete it, and list x' is strictly smaller than x since we delete some elements from x to create
x', this guarantees that thin_exh will terminate.

For instance, evaluating thin_exh r l gives us list [1,4]. Another example is when the relation r is the total
order <, run thin_exh (<) [2,3,4,1,5] we obtain [1].

In the worst case, we need to compare all pairs of elements in l, thus the thin_exh function will evaluate rel
O
(
M2
)

times, where M is the length of list l.

Thinning after sorting Although exhaustive thinning is perfect in the sense that all dominated configurations
will be eliminated, there exists another way to achieve perfect thinning that could be more efficient than the
exhaustive thinning strategy: thinning after sorting. The logic here is straightforward, we can sort a list with
respect to preorder rel first, then scan the list from start to end. We can find the first element b dominated by
the first element a, and all elements after b should be purged. It is clear that the time complexity of this strategy

81

is dominated by the time spent on sorting, as scanning the entire list takes only O (M) time, where M is the
length of the list. It is well-known that sorting on total/linear order set has optimal worst-case query complexity10

O (M logM), sorting a partially ordered set has a worst-case query complexity of (M (W + logM)), where W is the
maximal cardinality of the incomparable subsets, and this has been proved to be asymptotically optimal Daskalakis
et al. [2011].

The implementation of sorting algorithms is beyond the scope of this research, for convenience, we assume we
have a sorting function sort that sorts our list in order. For instance, given preorder r the list l = [1,2,3,4,5]
is sorted to [1,4,2,3,5].

The thinning algorithm for the sorted list is implemented as

thin_sort :: Rel a a -> [a] -> [a]
thin_sort rel [] = []
thin_sort rel [a] = [a]
thin_sort rel l@(a:x) = [a] ++ prefix

where
prefix = takeWhile (not . (rel a)) x

where the takeWhile function takes an initial segment of the list x for which all elements satisfy the predi-
cate not . (rel a). For instance, takeWhile (\x -> x <= 3) [1, 2, 3, 4, 2,1] = [1,2,3] , the function
takeWhile will stop taking elements when it encounters the number 4. For instance, evaluating
thin rel [1,4,2,3,4,5] will return the perfect thinning result [1,4].

This method is effective due to the transitivity of the preorder: if rel a b = True and rel b c = True then
rel a c = True follows. In a sorted list, we need only compare the “best” configuration a with the “last” con-
figuration b such that rel a b = False, with respect to the relation rel. Consequently, any configuration c
that comes “after” b, (i.e., configurations for which rel b c = True) will automatically satisfy rel a c = False
without further examination.

Thinning by bumping After introducing the perfect thinning algorithms, we now introduce linear-time thinning
algorithms, these implementations are only perfect in certain situations. The first linear-time method is called
bumping, the Haskell implementation of bumping is rendered as

thin_bump :: Rel a a -> [a] -> [a]
thin_bump rel [] = []
thin_bump rel [a] = [a]
thin_bump rel l@(a:x) = (bump [a] x)

where
bump acc [] = acc
bump acc x@(b:bs)

| rel (acc!!0) b = bump acc bs
| rel b (acc!!0) = bump ((tail acc) ++ [b]) bs
| otherwise = bump (acc ++ [b]) bs

the bump function has a accumulator acc which initialized as the first element a of list l, we always use the first
element acc!!0 of accumulator to recursively compared with the element b in x, if r (acc!!0) b == True, we
ignore b and compare the next elements in bs, if r b (acc!!0) == True, i.e., the first element in acc is dominated
by some b, then we delete acc!!0 from the accumulator. In the worst case, this strategy begins deleting elements
from the accumulator only after traversing to the last element of l. In this case, the number of evaluations of rel
is 3 ∗M , hence the complexity of thin_bump is O (M).

This strategy is perfect if the relation rel is a total order. For instance, evaluating thin_bump (<) [4,1,2,3,5]
will return [1]. However, in more general cases, when the dominance relation is a preorder, the effectiveness of this
thinning algorithm will become quite unpredictable. For instance, consider again the above definition of dominance
relation rel, thin_bump (rel) [4,1,2,3,5] = [4,1,2,3,5] but thin_bump (rel) [1,4,2,3,5] = [1,4], ex-
change only two elements in the list will obtain completely different results.

Thinning by squeezing In the previous study, De Moor [1995] proposed another method for implementing a
linear-time thinning algorithm, known as “squeezing.” This method removes an element from a list if its neighbor
is “smaller” in the preorder rel. In Haskell, we can define it as

10Query complexity is the number of comparisons performed

82

thin_squeeze :: Rel a a -> [a] -> [a]
thin_squeeze rel [] = []
thin_squeeze rel [a] = [a]
thin_squeeze rel l@(a:b:x)

| rel a b = thin_squeeze rel ([a] ++ x)
| rel b a = thin_squeeze rel ([b] ++ x)
| otherwise = [a] ++ (thin_squeeze rel ([b] ++ x))

Same as thin_bump function, we have no guarantee that thin_squeeze is perfect in general. For instance,
evaluating thin_squeeze rel [1,4,5,3,2] will give us [1,4,5,3]. The thin_squeeze function is usually more
efficient when the candidate list is sorted, such as thin_squeeze rel [1,4,2,3,5] will return [1,4,2].

Therefore, to make the program more efficient, the thin_squeeze function is often combined with another
operator mmerge, which is a generalized merge operation similar to that used in merge sort. It takes a preorder
rel, along with two lists x and y both sorted with respect to rel, and merges them to produce a new sorted list
containing exactly the elements of x and y [De Moor, 1995]. The implementation is as follows

mmerge :: Rel a a -> [a] -> [a] -> [a]
mmerge rel [] y = y
mmerge rel x [] = x
mmerge rel (a:x) (b:y)

| rel a b = [a] ++ mmerge rel x (b:y)
| otherwise = [b] ++ mmerge rel (a:x) y

For instance, evaluating mmerge (<) [1,3,5] [2,4,6] = [1,2,3,4,5,6].
The composition of the thin_squeeze function and the mmerge function is referred to as purge. It takes two

ordered lists, merges them, and then applies the squeezing operation to the result.

purge :: Rel a a -> Rel a a -> [a] -> [a] -> [a]
purge rel1 rel2 = (thin_squeeze rel1) . mmerge rel2

In practice, the relation in thin_squeeze may different with mmerge.

II.2.6.3 Dominance relations

Dominance relations are used extensively across various fields and have led to the construction of many successful
algorithms. Discovering dominance relations often involves insightful observations about the problem, and such
observations are typically not reusable across different problems. To address this issue, we propose two ingenious
dominance relations: the global upper bound (GUB) and the finite dominance relation (FDR). In the discussion of
Part III, we will explore how these two dominance relations are ubiquitous in machine learning and combinatorial
optimization research. In these fields, approximate algorithms are easy to obtain, and data is always finite. These
characteristics simplify the design and implementation of the GUB and FDR relations.

Previously, we have derived the classical definition of monotonicity in the context of SDP in Subsection II.2.5.5.
We have discussed this in Thm. 62 that a relation domR satisfying monotonicity can be fused into the thinning
algorithm However, we have not yet formally characterized what we mean by a dominance relation. We now present
a formal definition of the dominance relation in the context of SDP as follows.

Definition 16. Dominance relation. Given a relational algebra algR :: func Config -> Config, and two con-
figuration a :: Config and b :: Config. A relation domR :: Config -> Config is called dominance relation if

1. domR is a preorder

2. domR a b =⇒ domR a' b', where a' = algR (func a) and b' = algR (func b)

3. domR ⊆ r

where relation r :: Config -> Config is the preorder with respect to the objective function value. The second
condition is essentially the point-wise expression of (59). The preorder requirement is necessary because we need
transitivity to make the thinning process more efficient.

83

Global upper bound dominance relation Approximate/heuristic algorithms are ubiquitous in the study of
machine learning, operations research, and combinatorial optimization, where many problems involve intractable
combinatorics. Solving these problems with exact algorithms becomes inefficient as the dataset grows larger. How-
ever, by using approximate algorithms, we can obtain an approximate solution very cheaply, since these algorithms
typically have a low-order polynomial time complexity.

The global upper bound (GUB) dominance relation exploits the simple fact that the global optimal solution will
always be at least as good as the local optimal solutions. Hence, we can use any approximate/heuristic algorithms to
obtain a global upper bound, and any partial configurations with an objective value greater than this global upper
bound are guaranteed to be non-optimal. In practice, the use of GUB is extremely powerful as it can significantly
shrink the search space. This is because the global upper bound obtained by approximate algorithms is usually
very tight. As a result, exact algorithms can often run from several hours to just a few seconds after applying this
technique.

To simplify our notation, we use a triple in the form of cnfg = (c,s,e) :: Config to represent a configuration.
This configuration triple consists of a combinatorial configuration, a data sequence, and the objective value for this
configuration. Suppose we have another fictitious configuration fict = (_,_,ub)11. We define the GUB relation
as gubdomR fict cnfg = True if leq ub e = True, i.e., ub ≤ e.

Next, we need to show that relation gubdomR is indeed a valid dominance relation that satisfies the monotonicity.
According to Def. 16, a relation gubdomR is defined based on leq, thus, it is a preorder. Also gubdomR satisfies the
following monotonicity condition

gubdomR fict cnfg =⇒ gubdomR fict cnfg', (66)

where cnfg' = algR (func cnfg) is the updated configuration for partial configuration cnfg. For most machine
learning problems, the objective function is defined as the summation of non-negative loss terms, one for each data
item. This immediately implies that eval cnfg' ≥ eval cnfg ≥ ub. This holds true for any problems where the
objective value does not decrease after the configuration is updated.

Finite dominance relation The finite dominance relation is another generic and useful dominance relation
which explores the finiteness of the dataset. Since we have only a limited amount of data, in many applications,
we can estimate how the objective function value of a partial configuration will change if we extend it to complete.
There are two types of estimations: we either estimate the “largest” objective value or the “lowest” objective value
before extending a partial configuration to a complete configuration. These two approximations are referred to as
the pessimistic upper bound or the optimistic lower bound.

The intuition for constructing a valid finite dominance relation is that if the pessimistic upper bound of a partial
configuration a is greater than the optimistic lower bound of b can be discarded. This is because the best possible
extension of b cannot achieve a lower objective value than a. This concept is akin to the lower and upper bound
techniques used in branch-and-bound (BnB) algorithms to reduce the combinatorial search space, although these
techniques are rarely analyzed formally. We now formalize this idea and prove it in the context of SDP.

Assuming we have two configuration a = (c_a, s_a, e_a) and b = (c_b, s_b, e_b) along with two functions
pes_ub :: [Config] -> Loss and opt_lb :: [Config] -> Loss to estimate the pessimistic upper bound or
optimistic lower bound of a configuration. The finite dominance relation is defined as fdomR a b == True if
pes_ub a ≤ opt_lb b. We need to verify

fdomR a b =⇒ fdomR a' b', (67)

where a' = algR (func a) and b' = algR (func b) is the updated configuration for partial configuration a and
b. This implication holds because of the properties of pes_ub and opt_lb functions. The pes_ub has a property
that pes_ub a' ≤ pes_ub a, because function pes_ub a evaluate the “worst-case” objective value of a, any update
a' of a will have smaller or equal worst-case objective value, since a' may not be the worst update of a. Similarly,
we have opt_lb b' ≥ opt_lb b, because any update b' may not be the best update of b. Therefore, the above
implication trivially holds.

Another way to use finite dominance relation is to combine it with the global upper bound technique. We know
that the optimistic lower bound function opt_lb calculates the best-case objective value of a partial configuration.
One intuition to combine it with the GUB technique is that if the optimistic lower bound of a partial configuration
a is greater than the global upper bound ub, then we can freely discard it. To verify this intuition, we define a

11In Haskell, symbol “_” denotes that the value is irrelevant.

84

dominance relation as fubdomR fict a == True if ub ≤ opt_lb a. We need to verify fubdomR satisfies

fubdomR fict a =⇒ fubdomR fict a. (68)

This implication is true because opt_lb a' ≥ opt_lb a ≥ ub.
The below two examples illustrate the applications of finite dominance relation in machine learning problems.

Example 5. Classification problem. In our previous work on the 0-1 loss classification problem [Xi and Little, 2023],
we applied the finite dominance relation to develop an algorithm called Incremental Combinatorial Purging (ICG-
purge). This algorithm exploits the fact that the optimistic lower bound for a partial configuration is the same as the
0-1 loss of this configuration, and the pessimistic upper bound for a partial configuration a – a binary assignment –
is equivalent to the number of remaining recursive step n. Hence if a configuration loss a + n <= loss b, we can
know configuration b will be non-optimal, then a dominate b . This result can be easily generalized to the weighted
0-1 loss classification problem and other loss functions with non-decreasing objectives concerning increasing data.

Example 6. Regression tree problems. Previous work of Zhang et al. [2023] designed a method called “the K-means
lower bound” to calculate the optimistic lower bound for the sparse regression tree problem. Their method relies on
the intuition that an optimal regression tree solution can never be better than the result of 1D K-means clustering
on labels. This introduces an optimistic lower bound, which allows us to eliminate any partial configurations that
have an optimistic lower bound greater than the global upper bound.

II.2.7 Backtracking and branch-and-bound
Branch-and-bound (BnB) algorithms are methods for global optimization in combinatorial optimization problems.
It has been broadly used to solve computation-intensive, typically NP-hard, problems, such as the traveling salesman
problem [Balas and Toth, 1983], the vehicle routing problem [Christofides et al., 1981] in operation research, and
the hyperplane decision tree problem [Dunn, 2018], sparse decision tree problem [Lin et al., 2020], 0-1 loss linear
classification problem [Nguyen and Sanner, 2013], Euclidean K-center problems [Fayed and Atiya, 2013], and K-
means problem [Du Merle et al., 1999, Koontz et al., 1975] in machine learning research.

The underlying idea of BnB algorithms is to decompose a given problem, which is difficult to solve directly,
into consecutive partial problems of smaller sizes. This decomposition is applied repeatedly until each subproblem
is either solved or proven not to yield an optimal solution to the original problem. The assessment of a partial
problem in BnB algorithms typically involves computing a lower bound on the minimum objective value, similar to
the optimistic lower bound that we introduced above. If the computed lower bound exceeds the objective value of
the best upper bound currently available, it indicates that the partial problem cannot provide an optimal solution
to the original problem.

Backtracking is widely used in combinatorial optimization [Kreher and Stinson, 1999] and combinatorial gener-
ation [Ruskey, 2003] studies, and is often considered a key feature of BnB algorithms. In the study of combinatorial
generation, it is required to generate all possible configurations that satisfy some predicates. Starting from a
seed configuration, it is recursively updated according to some procedure, once the partial configuration becomes
infeasible with respect to a predicate, then we backtrack to the previous feasible partial configuration.

On the other hand, in the study of BnB algorithms. The problem requires finding one optimal solution instead
of generating all possible configurations. The BnB algorithms systematically search for the optimal solution to a
problem by repeatedly attempting to extend an approximate solution in all possible ways. If a particular extension
fails, the algorithm “backtracks” to the last point where alternative options are still available.

Branch-and-bound in constructive algorithmics Two common issues in the study of BnB algorithms are
the proof of exhaustiveness and the analysis of time complexity. These issues are often conducted through tedious
inductive proofs or, more frequently, presented as assertions or informal explanations. However, the lack of proof
of exhaustiveness poses significant risks, as it leaves uncertainty about whether BnB algorithms are truly exact. If
BnB algorithms are indeed exact, we should be able to derive them from an exhaustive search specification.

At the same time, when claiming that an algorithm can find the exact solution to a problem, it is essential to
clarify what is meant by “can” first. In other words, the interpretation of “can” varies depending on whether we
allow a time of 1 minute, 1 hour, or 1 year, or merely require that the time be finite. However, most BnB algorithms
exhibit exponential complexity in the worst case, so claiming that these algorithms can solve the problem often
amounts to a vacuous assertion.

All in all, the correctness and the terseness of the proof, as well as the worst-case time guarantee, are critical for
exact algorithms.To address the aforementioned issues in BnB studies, we will explore how to formally characterize

85

the BnB method within our framework. As we noted in Section I.2.2, BnB algorithms consist of four main factors:
branching rules, pruning, bounding rules, and search strategies. Through our exposition, we can immediately connect
these terms to decision functions, the thinning process, and the dominance relations that we have introduced above.
However, search strategies and backtracking techniques have not been discussed in previous sections. In this
section, we will analyze these aspects within our framework. As we will show, the BnB method, when defined as
a combinatorial generator incorporating backtracking techniques, can be derived from catamorphism generators.
Since catamorphism generators are exhaustive, it follows that combinatorial generators involving backtracking are
also exhaustive.

In Section II.1.2, we illustrated the combinatorial generation tree for nearly all the SDP generators we introduced.
Drawing a generation tree diagram for a catamorphism generator is the same as representing a recursion as an
iteration. Indeed, transforming a recursion as iteration is always possible for any recursion that is defined by a
catamorphism. Indeed, the key to incorporating the backtracking technique into catamorphisms lies in transforming
a recursive-style program into an iterative-style program. A similar characterization can be found in [Fokkinga, 1991].
Since Fokkinga [1991]’s work was published in the early stage after the introduction of constructive algorithmics
by Meertens [1986], his proof relies on an inductive style and spans nearly five pages. We now provide a simpler
characterization based on the definition of catamorphisms.

Theorem 4. Branch-and-bound characterization theorem. Given a catamorphism cata alg x on cons-list ListFr a,
where x = [an...a1] is a finite list. We have following equality

cata alg x = concat $ map (alg_pt_iter x 0 algR_pt) e, (69)

where e = alg_pt Nil, and alg_pt_iter is defined as

algR_pt_iter x i algR_pt y
| i == length x = [y]
| i < length x = concat $ map (algR_pt_iter x (i+1) algR_pt) $ algR_pt (Cons

(x!!i) y)

where algR_pt_iter represents an iteration of algR_pt with input y from index i to the end of list x. The
right-hand side of (69) is referred to as an iterative catamorphism or branch-and-bound algorithm (catamorphism
with backtracking).

Proof. A catamorphism over cons-list can be expended as

cata alg [an..a1] = alg (Cons an (alg ... alg (Cons a1 (alg [])))), (70)

we have the following equational reasoning steps

alg (Cons an (alg ... alg (Cons a1 (alg []))))
≡ let e = alg []
alg (Cons an (alg ... alg (Cons a1 e)))

≡ equivalent equation
alg . (Cons an) (alg ... alg . (Cons a1) e)

≡ equation (54) alg . (Cons a)= concat . map algR_pt . (Cons a)
concat $ map (algR_pt . (Cons an)) (concat ... concat (map (algR_pt . (Cons a1)) e))

≡ definition of algR_pt_iter
concat $ map (algR_pt_iter x 0 algR_pt) e

Indeed, a seed configuration e is repeatedly extended by algR_pt in a depth-first way because the laziness of
Haskell12. If a partial configuration fails to pass the filter or is proven to be non-optimal, the process “backtracks”
to the last valid point where further alternatives are still available.

12Haskell is a lazy language. It means that expressions are not evaluated when they are bound to variables, but their evaluation is
deferred until their results are needed by other computations. In consequence, arguments are not evaluated before they are passed to a
function, but only when their values are actually used.

86

The iterative catamorphism in (69) is performed in a depth-first way, because the map function always starts
from the first elements in the list. We can generalize the iterative catamorphism (69) (BnB algorithms) to perform
arbitrary search strategies by changing the definition of the map function

map' :: (Ord a, Ord b) => [a] -> [a] -> (a -> b) -> [a] -> [b]
map' (sort r) f xs = map f ((sort r) xs)

iter_cata :: [a] -> (ListFr a [a] -> [[a]]) -> [[a]]
iter_cata x algR_pt = concat $ map' (alg_pt_iter x 0 algR_pt) e

where e = [[]]

where sort r :: Rel a a -> [a] -> [a] sort the original list with respect to a total ordering r and the map
function in alg_pt_iter should change accordingly. If r is the total order with respect to the objective value, then
the program iter_cata is performed in a best-first way.

The iterative catamorphism, iter_cata, provides proof of exhaustiveness for combinatorial optimization and
generation algorithms that use backtracking techniques. In other words, it demonstrates that the BnB algorithm
can be derived from an exhaustive search specification defined by a cons-list catamorphism. Furthermore, iter_cata
provides a formal and generic definition for the BnB method, where different search methods can be implemented
by simply modifying the map' function.

Comparison of different search strategies The use of backtracking techniques can improve best-case time
and space efficiency. However, when generation trees are expanded using a depth-first approach—or other strategies
such as best-first or iterative deepening—it is crucial to recognize that, under certain objectives, backtracking may
result in a greater number of partial configurations being visited. For instance, if the optimization objective is
related to the depth of a configuration in the generation tree—defined as the number of update operations applied
to reach the configuration from the initial seeds—then an ordinary catamorphism without backtracking is likely
more efficient, as it explores solutions layer-by-layer. Thus, in combinatorial optimization, while backtracking can
improve best-case time complexity, it may also worsen worst-case time complexity in some problems.

Furthermore, from an implementation perspective, managing an entire list of partial configurations is easier
than handling each partial configuration one-by-one by using a for loop. Therefore, once the backtracking method
is involved, parallelization becomes difficult due to the required communication between different processors. In
contrast, the ordinary catamorphism generator based on the join-list is embarrassingly parallelizable, requiring zero
communication between processors.

In terms of memory complexity, when a complete configuration with an objective value smaller than the global
upper bound is found, the global upper bound can be replaced with this configuration’s objective value. Conse-
quently, the number of configurations generated by backtracking algorithms is always less than or equal to that
produced by the ordinary catamorphism generator, as more configurations are pruned by a tighter global upper
bound. In practice, using backtracking techniques can result in significant memory savings.

II.2.8 Recursive optimization framework
II.2.8.1 Hylomorphism recursive optimization framework

Given a COP that is specified in the form

sel r . Λ(hylo algRf coalgR), (71)

consider only the case where the relational algebra is a function algRf :: func a -> a (function is a special case of
relation), we call it relational function-algebra. Note that both relational function-algebra algRf and its functional
correspondence alg :: func [a] -> [a] are functions, we distinguish them through their type information).

Given a problem specified in the form of (71), Bird and De Moor [1996] present the following theorem.

Theorem 5. Dynamic programming theorem. If algRf is monotonic on R, then the solution to specification (71)
can be obtained by

hyROF = sel r . (map (algRf . (fmap hyROF))) . ΛcoalgR), (72)

where the relational algebra has type algRf :: func a -> a, and the power transpose of the relational coalgebra
has type ΛcoalgR :: a -> [func a].

87

When the DP algorithm exists, it is precisely when the condition of Theorem 5 holds for the cons-list datatype.
Considering the greater expressivity of hylomorphism, which extends beyond the cons-list datatype, thus Theorem
5 provides a more general and powerful framework for constructing recursive optimization programs.

We can implement (71) in Haskell as
hyROF :: (Functor func, Eq a)=> Rel b b -> (func b-> b)-> (a ->[func a])-> a -> b
hyROF r alg coalg = minlist r . (map (alg . fmap (hyROF r alg coalg))) . coalg

because we can not implement power transpose in Haskell, so we use function coalgR_pt to represent the function
after applying power transpose to relational coalgebra coalgR. It is very easy to verify that when relational
function-coalgebra coalgR is the terminal algebra out, the program (72) becomes a catamorphism13.

In many cases, for some special relations, the selector relation r is difficult to be implemented in a functional
language. To address this issue, we can instead replace selector minlist r with a function polymin of type
polymin :: [b] -> b, and hyROF can be reformulate as

hyROF_poly :: (Functor func,Eq a)=> ([b]-> b)-> (func b->b)-> (a->[func a])->
a-> b

hyROF_poly polymin alg coalg = polymin .
(map (alg . fmap (hyROF_poly polymin alg coalg))) . coalg

Furthermore, consider the case where a dominance relation exists, and thinning algorithm is applicable, we have
the following corollary.
Theorem 6. Hylomorphism recursive optimization theorem. If algRf is monotonic on R, given a dominance relation
domR :: Rel (func a) (func a), if domR is a preorder satisfying

algRf . (fmap (hylo algRf coalgR)) . domR◦⊆r◦. algRf . (fmap (hylo algRf coalgR)), (73)

then solution obtained by

hyROF_thin = sel r . (map (algRf . (fmap hyROF))) . thin domR . ΛcoalgR), (74)

is a solution of (71).
We can implement hyROF_thin as
hyROF_thin :: Functor func=> Rel b b -> (func b -> b)->(a -> [func a])-> a -> b
hyROF_thin r algRf coalgR_pt = minlist r .

(map (alg . fmap (hyROF_thin r alg coalgR_pt))) . (thin domR) . coalgR_pt
We refer to problems that satisfy the conditions given by Thm. 6 are problems that can be solved by the

hylomorphism recursive optimization framework (Hy-ROF).

II.2.8.2 Catamorphism recursive optimization framework

In many cases, specifying a COP specified through hylomorphism (56) is unnecessary because the coalgebra is
not required. More commonly, the problem can only be decomposed sequentially, i.e., the problem can only be
specified through a catamorphism (57). Compared with hylomorphisms, the sequential decomposition process
in catamorphism provides more simplicity, making the program much more comprehensible. Therefore, when
applicable, it is preferable to construct an efficient recursive optimization program based on catamorphisms rather
than hylomorphisms.

Given a COP problem specified as (57), the following corollary provides a method for constructing an efficient
program to solve it.
Corollary 4. Catamorphism recursive optimization framework. If domR ⊆ r and algR:: func a -> a is mono-
tonic on domR◦, then the solution of

sel r . cata (thin domR . alg), (75)

is also a solution of (57), where the functional algebra alg :: func [a] -> [a] is the functional correspondence
of the relational algebra algR.

In particular, when the greedy condition is satisfied, i.e., domR = r, (75) becomes a greedy algorithm
We call any problems that satisfied the condition given by Corollary 4, the problems that can be solved by the

catamorphism recursive optimization framework (Cata-ROF).
13By applying the rule min r . map X ⊆ X . ∈ and ∈ . Λ = id. The inclusion becomes equality when X is a function

88

II.2.9 Reconcile combinatorial optimization methods
Inclusion relationships between different combinatorial optimization methods Now, after introducing
the hylomorphism and catamorphism recursive optimization frameworks, it is time to rediscuss the question, what
is the recursive optimization framework, and how are classical CO methods related to it?

The recursive optimization framework is a way to construct efficient recursive programs for solving COPs. It
subsumes the classical algorithm design strategies, such as greedy method, dynamic programmings and divide-and-
conquer methods, and they have the following inclusion relations

SDP ⊆ Greedy algorihtm ⊆ BnB ⊆ General SDP ⊆ DP ⊆ General D&C, (76)

where general SDP and general D&C refer to ordinary SDP (catamorphism) and ordinary D&C (hylomorphism)with
additional thinning processes, alternative search strategies, and the memoization technique. The inclusion relations
above are implied by the following inclusion relations of their abstractions

Catamorphism ⊆ Cata-ROF ⊆ Hy-ROF. (77)

The most basic strategy is the ordinary sequential decision process, which corresponds to catamorphism. Accord-
ing to Greedy Theorem 2 and Branch-and-Bound Characterization Theorem 4, both the greedy and BnB method
are subsumed within Cata-ROF, which can be understood as incorporating a ordinary catamorphism with a thin-
ning algorithm and alternative search strategies. The greedy algorithm is a special case of the thinning algorithm,
and the backtracking technique can be incorporated by reformulating the catamorphism.

Similarly, DP algorithms are characterized by the Dynamic Programming Theorem 5, which can be further
refined based on whether the DP problem’s subproblems have a layered or symmetric structure [Bird, 2008]. How-
ever, the Thm. 5 itself does not allow one to use the memoization technique which is often considered as the main
characteristic of the DP algorithm. We argue that memoization is not a special “technique” for speeding up the
DP algorithm but rather an inherent byproduct of DP recursion itself. A bottom-up recursion naturally avoids
the recomputation of subproblems. This efficiency stems directly from the recursive structure of the algorithm,
not from an external optimization. The property of overlapping subproblems is what distinguishes the DP method
from classical D&C method. The classical D&C method decomposes a problem into subproblems arbitrarily, with-
out overlap. In contrast, dynamic programming always involves overlapping subproblems in its decomposition.
Clearly, both DP and classical D&C methods can be represented by hylomorphism, i.e., general D&C.

When implementing memoization, an alternative perspective can be helpful by viewing DP algorithms as a form
of the course-of-values recursion. This approach integrates catamorphism with context-sensitive computations
modeled by comonads. In this way, DP can be characterized as a histomorphism [Hinze and Wu, 2013].

We classify BnB method as a subclass of DP method because the recursive structure of DP algorithms is
more complex than a ordinary catamorphism. A detailed analysis of their difference will be provided in the next
subsection.

We can now conclude the inclusion relation as described in (5) is indeed valid.

Branch-and-bound and dynamic programming Kohler and Steiglitz [1974], Ibaraki [1977] discuss how several
dynamic programming algorithms can be formulated within the framework of BnB, which seems to imply the DP
method are subclass of BnB method. However, we disagree with this view for two reasons.

First, almost all BnB algorithms [Balas and Toth, 1983, Aglin et al., 2020, Diehr, 1985, Fayed and Atiya, 2013,
Fokkinga, 1991, Ibaraki, 1977, Zhang, 1996, Nguyen and Sanner, 2013] describe BnB as a sequential decomposition
process, i.e., a catamorphism. Moreover, foundational theoretical research on the BnB method [Ibaraki, 1977,
Kohler and Steiglitz, 1974, Zhang, 1996]defines the branching rules as the decomposition of the complete problem
into disjoint subproblems.

Second, using alternative search strategies in problems involving overlapping subproblems becomes intricate. In
dynamic programming recursion, a depth-first search strategy will inevitably revisit the same subproblem multiple
times, as subproblems are shared. While recomputation can be avoided through caching or the use of a memoization
table, the lookup time can be significant, especially for complex datatypes like trees or lists.

II.2.10 From theory to practice
To demonstrate the power of our framework, we use it to solve two common combinatorial optimization problems,
the maximum sublist sum problem and the sequence alignment problem. The first problem is known to have a

89

greedy solution, and another is well-known to have a DP solution. In this section, we show how to design these two
algorithm from scratch.

In particular, for each COP, we sometimes need to solve either the optimal configuration problem or the optimal
value problem. The optimal configuration problem involves finding the optimal configuration of a COP, whereas
the optimal value problem focuses on determining the optimal objective value of a COP. In our framework, these
tasks can be achieved by modifying the corresponding algebra or coalgebra. In nearly every case, the optimal value
of the problem can be obtained from the optimal configuration. However, executing a program that produces the
optimal value is often more efficient in terms of actual wall-clock run-time, as the optimal value problem primarily
involves numerical operations.

In the analysis of this section, we will provide solutions for both the optimal configuration problem and the
optimal value problem for both the maximum sublist sum problem and the sequence alignment problem.

II.2.10.1 Maximum sublist sum problem

The goal of the maximum sublist sum problem is to find the maximum sum of any sublist within a given list. This
problem is well-known and has a greedy solution. In this section, we explain how to derive an efficient algorithm
for this problem within our framework. Based on our previous discussion in Section II.2.3, the sublists generator
for the cons-list datatype can be defined as follows

subsAlg Nil = [[]]
subsAlg (Cons a xs) = map (a:) xs ++ xs

subs = cata subsAlg

For this problem, the cost of a configuration (sublists) is simply the sum of the values within the sublists. Thus,
the selector relation is a total order that can be defined as r = sum◦ . geq . sum. In Haskell, r can be defined
as the following expression

r :: (Num a, Ord a) => Rel [a] [a]
r a b = sum a >= sum b

Thus the selector of the maximum sublist sum problem can be defined as
maxlist :: (Num a, Ord a) => [[a]] -> [a]
maxlist = minlist rel

The exhaustive search algorithm for this problem can hence be defined as
maxSub :: (Num a, Ord a) => [a] -> [a]
maxSub = maxlist . subs

This exhaustive search algorithm is undoubtedly inefficient, as the number of possible sublists generated by the
subs is 2N large. However, for this problem, we can integrate the selector maxlist into the generator. Therefore,
there exist a greedy solution to the maximum sublist sum problem.

Optimal configuration problem In order to prove there exists a greedy solution to the maximum sublists sum
problem, we need to show the relational algebra of the generator satisfies the greedy condition given in Thm. 2, i.e.,
we need to prove subsalgR is monotonic with respect to r◦ = sum◦ . leq . sum. According to the Eilenberg-
Wright lemma, the relational definition of the sublists algebra subsalgR is defined as

subsAlgR :: ListFr a [a] -> [a]
subsAlgR Nil = []
subsAlgR (Cons a x) = a:x or x

Again, the or symbol does not exist in Haskell; it is used metaphorically to represent logical “or” since we cannot
define a relation in Haskell.

In the context of SDP, the meaning of monotonicity is given in (59). Let’s verify this is true for algebra subsalgR
and relation r◦ = sum◦ . leq . sum. If two configuration (sublists) x and y satisfies r◦ x y = True, i.e., x have a
smaller sum value compared with y, then it is easy to verify r◦ x y ⊆ r◦ x' y', where x' = subsAlgR (Cons a x)
and y' = subsAlgR (Cons a y). Following the result of the Greedy Theorem 2, we have

cata (max . ΛsubsalgR) ⊆ max . Λ(cata subsalgR)

where the power transpose of the relational algebra ΛsubsalgR is defined as

90

subsAlgR_pt :: ListFr a [a] -> [[a]]
subsAlgR_pt Nil = []
subsAlgR_pt (Cons a x) = [a:x] ++ [x]

Moreover, the selector maxlist can be fused into subsAlgR_pt by defining

maxSubsAlgR_pt :: (Num a, Ord a) => ListFr a [a] -> [a]
maxSubsAlgR_pt Nil = []
maxSubsAlgR_pt (Cons a x) = maxlist ([a:x] ++ [x])

Finally, the maximum sublists sum problem can be solved greedily using the following program

maxSubs' = cata maxSubsAlgR_pt

Optimal value problem In some applications, we may be interested only in obtaining the optimal value of
the problem, rather than the optimal configuration. It turns out that if the algebra for the optimal configuration
problem is monotonic with respect to a selector relation of the form r = cost◦ . leq . cost then the algebra
for the optimal value problem is also monotonic with respect to r'◦ = leq, and the algebra for the optimal value
problem can be obtained by fusing the algebra for the optimal configuration problem with the incremental update
of the cost function.

In the case of the maximum sublists sum problem, the algebra for the optimal value problem is defined as

subsValAlgR :: ListFr a Int -> Int
subsValAlgR Nil = 0
subsValAlgR (Cons a acc) = (a+acc) or acc

which is obtained by integrating subsAlg with the incremental update of the sum function, where the new value a
is simply added to the accumulated value acc. It is trivial to verify that subsValAlgR is monotonic to r'◦ = leq ,
given subsalgR is monotonic to r◦ = sum◦ . leq . sum. Therefore, the optimal value of the maximum sublist
sum problem can be obtained using the following greedy algorithm

maxSubsValAlgR_pt :: ListFr Int Int -> Int
maxSubsValAlgR_pt Nil = 0
maxSubsValAlgR_pt (Cons a acc) = max (a+acc) acc

maxSubsVal = cata maxSubsValAlgR_pt

where maxSubsValAlgR_pt is the fused function of max :: a -> a -> a and the power transpose of subsValAlgR.

II.2.10.2 Sequence alignment problem

The sequential alignment problem is a well-known problem in bioinformatics that can be solved by using a dynamic
programming algorithm. We have two DNA or protein sequences, and we want to infer if they are homologous or
not. To do this, we need to measure the similarity of the two sequences xand y, and their similarity is measured
by finding the shortest editing sequence. In the basic case, we assume there are just three basic editing operations:
match, delete and insert. The match operation matches a character a which is an element of both in xand y, the
delete operation delete a character a from x, and the insert operation insert a character a in y. These three basic
operations can be defined as the following type

data Op a = Mat a | Del a | Ins a deriving Show

Optimal configuration problem If fact, the sequence of editing operations contains enough information to
recover sequences x and y from scratch, match a means append a to both sequences, delete a means append a to
the left sequence, insert a means append a to the right sequence.

Given an editing sequence [Op a], we can easily define a cons-list algebra such that the catamorphism of it
receives an editing sequence and recursively constructs the original two strings from scratch.

editalg :: ListFr (Op a) ([a],[a]) -> ([a],[a])
editalg Nil = ([],[])
editalg (Cons op (x,y)) = case op of (Mat a) -> ([a] ++ x, [a] ++ y)

(Del a) -> ([a] ++ x, y)

91

(Ins a) -> (x, [a] ++ y)

edit :: [Op a] -> ([a],[a])
edit = cata editalg

For instance, evaluating cata editalg [Del 2,Ins 1,Mat 3] returns ([2,3],[1,3]).
Constructing the edit function is clearly much easier compared with constructing the sequence alignment

algorithm directly. With careful observation, this task can be accomplished by most individuals. This is in fact the
most important reason to use this relational framework. Next, we will demonstrate that the sequence alignment
dynamic programming algorithm can indeed be derived from the specification of the edit function.

The edit function recovers two sequences from a given editing sequence, its converse edit◦ should be a re-
lation that takes a pair of sequences and returns an editing sequence. In other words, edit◦ should possess a
type information edit◦ :: ([a],[a]) -> [Op a]. As a result, from the definition, Λedit◦ should have a type
Λedit◦ :: ([a],[a]) -> [[Op a]], i.e., a function that takes a pair of sequence and returns all editing sequence.
Hence the specification of the sequence alignment problem can be formally characterized as

min r . Λ(edit◦) (78)

where edit◦ = ana editalg◦ because the edit is defined as a catamorphism, its converse edit◦ should be an
anamorphism. Although editalg is a function, its inverse editalg◦ should be a non-deterministic relation, since
any pair of sequences has three possible choices of operations. Let editalg◦ = uneditCoalgR which can be defined
as

uneditCoalgR :: Eq a => ([a],[a]) -> ListFr (Op a) ([a],[a])
uneditCoalgR ([],[]) = [Nil]
uneditCoalgR ((a:x),[]) = Cons (Del a) (x,[])
uneditCoalgR ([],(b:y)) = Cons (Ins b) ([],y)
uneditCoalgR ((a:x),(b:y)) = Cons (Mat a) (x,y)

or Cons (Del a) (x,b:y)
or Cons (Ins b) (a:x,y)

the derivation of uneditCoalgR based on the fact when x or y in pair (x,y) is non-empty, we always have three
choices to generate new an operation, if the first elements of x and y matches, we construct a new Mat operation,
or we can either delete the first element from x or insert a new element to y. Observe that, when Mat operation is
applied, it can always lead to a shorter sequence, thus uneditCoalgR can be modified as

uneditCoalgR :: Eq a => ([a],[a]) -> [ListFr (Op a) ([a],[a])]
uneditCoalgR ([],[]) = [Nil]
uneditCoalgR ((a:x),[]) = [Cons (Del a) (x,[])]
uneditCoalgR ([],(b:y)) = [Cons (Ins b) ([],y)]
uneditCoalgR ((a:x),(b:y))

| (a == b) = Cons (Mat a) (x,y)
| otherwise = (Cons (Del a) (x,b:y)) or (Cons (Ins b) (a:x,y))

To design a DP solution for problem (78), we need to verify the algebra for (78) is monotonic to the selector
relation r. However, at first glance, there exists no algebra for specification (78), since this is an anamorphism
instead of a hylomorphism.

Nonetheless, based on our previous discussion, we know that the hylomorphism is equivalent to a catamorphism
composed with anamorphism hylo alg coalg = cata alg . ana coalg and cata in = id. Thus ana uneditCoalgR
can be considered as a hylomorphism for which the algebra is the initial algebra. In other words, we have equality

hylo in uneditcoalg = cata in . ana uneditcoalg = ana uneditcoalg

and the initial algebra in can be defined explicitly as

in :: ListFr a [a] -> [a]
in Nil = []
in (Cons a x) = a:x

By defining the selector relation as r = length◦ . leq . length , it is trivial to verify that initial algebra
in is monotonic with respect to r. Therefore, according to Thm. 5, the problem (78) can be solved exactly by the
following program

92

mes :: Eq a => ([a],[a]) -> [Op a]
mes = hyROF r mesAlg mesCoalg

where
r a b = length a <= length b
mesAlg = in
mesCoalg = uneditCoalgR_pt

where uneditCoalgR_pt is the power transpose of coalgebra uneditCoalgR, which is defined as
uneditCoalgR_pt :: Eq a => ([a],[a]) -> [ListFr (Op a) ([a],[a])]
uneditCoalgR_pt ([],[]) = [Nil]
uneditCoalgR_pt ((a:x),[]) = [Cons (Del a) (x,[])]
uneditCoalgR_pt ([],(b:y)) = [Cons (Ins b) ([],y)]
uneditCoalgR_pt ((a:x),(b:y))

| (a == b) = [Cons (Mat a) (x,y)]
| otherwise = [(Cons (Del a) (x,b:y)), (Cons (Ins b) (a:x,y))]

For instance, executing mes ([1,2,3], [3,2,1]) gives us [Del 1,Del 2,Mat 3,Ins 2,Ins 1].

Optimal value problem and generator In order to solve the optimal value problem, we simply need to simply
modify the algebra mesAlg as following

mesValAlg :: ListFr (Op a) Int -> Int
mesValAlg Nil = 0
mesValAlg (Cons a acc) = 1 + acc

which is obtained by integrating mesAlg with the incremental update of the cost function length, where the update
simply adds 1, as each additional element increases the list’s length by one.

Let mesValCoalg = uneditCoalgR_pt, the coalgebra is kept unmodified. We have the following program for
solving the optimal value problem of the sequence alignment problem

mesVal :: Eq a => ([a],[a]) -> Int
mesVal = hyROF r mesValAlg mesValCoalg

where
r = (<=)
mesValCoalg = uneditCoalgR_pt

Evaluating mesVal ([1,2,3], [3,2,1]) gives us the length of the shortest editing sequence, which is 5.
Similarly, we can also construct a program for the generation problem, which generates all possible editing

sequences for a pair of input sequences, the algebra used in the generator is defined as
genesAlg :: Eq a => ListFr (Op a) [[Op a]] -> [[Op a]]
genesAlg Nil = [[]]
genesAlg (Cons a xs) = map (a:) xs

On the other hand, for the generation problem, it is not easy to define the selector relation r that is used
to define the selector, it will involves to define many terms that will not be used elsewhere in the thesis. To
simplify our discussion we can instead of defining the selector for the generator problem as sel r = concat, the
concat :: [[a]] -> [a] function flatten a list of lists to a list by removing inner brackets, it thus satisfies the
type requirement in order to use program hyROF_poly, thus the generator for the sequence alignment problem

genes :: Eq a => ([a],[a]) -> [[Op a]]
genes = hyROF_poly concat genesAlg genesCoalg

where genesCoalg = = uneditCoalgR_pt

which generates all possible alignment sequences for a pair of sequences. For instance, evaluating
genes ([1,2,3], [3,2,1]) generates all possible editing sequence
[[Del 1,Del 2,Mat 3,Ins 2,Ins 1],[Del 1,Ins 3,Mat 2,Del 3,Ins 1]..]

II.2.11 Chapter discussion
In this chapter, we present a comprehensive exposition of several fundamental concepts in constructive algorithmics,
as well as Bird and De Moor [1996]’s relational calculus of programs, with a particular emphasis on combinatorial

93

optimization. Despite its simplicity and elegance, Bird and De Moor [1996]’s relational calculus may be hard to
grasp for uninitiate, as most of us are more familiar wit functions. It is natural to ask whether this formalism can be
expressed purely in functional. However, when it comes to program derivation, the relational formalism appears to
be indispensable, as many specifications can only be accurately expressed through relations rather than functions.

Additionally, we have introduced various efficient catamorphism generators for both cons-list and join-list
datatypes in Section II.2.3, covering various basic combinatorial structures. These generators constitute an ex-
tensive, readily applicable library for combinatorial optimization tasks involving such structures. In the discussion
of Part III, we demonstrate how these basic generators, along with the principles for constructing complex combina-
torial generators introduced in Subsection II.2.3.4, can aid in solving many NP-hard combinatorial machine learning
problems. However, many of the combinatorial generators presented are based on existing work in the literature,
and their derivations have largely been guided by observation and intuition. It remains an open question whether
more sophisticated design principles can be formulated to derive these generators from relational specifications, as
Bird and De Moor [1996] did for sublist, permutation, and partition generators over cons-list catamorphisms.

We believe the algorithm design framework proposed here is particularly important in the design of exact
algorithms, as these algorithms are typically applied to high-stakes problems where even small errors can lead to
significant consequences. This framework allows for the derivation of algorithms through equational reasoning,
ensuring programs are provably correct with straightforward and transparent reasoning. In other words, it not
only enables the creation of correct programs but also provides simple proofs for their correctness. In contrast,
formal proofs for classical BnB algorithms often involve tedious inductive steps, and proofs for MIP solvers require
managing generative recursions, making termination proofs necessary and parallelization difficult.

94

II.3 Combinatorial geometry
In this Chapter, we focus on geometry objects consist of finite hyperplanes and data points. Two key reasons motivate
our study of these objects: First, the combinatorics of these two objects are well-studied and the combinatorial
problems related to these two objects are central topics in combinatorial geometry. Second, most successful machine
learning models, including ReLU neural networks and decision trees, are based on piecewise linear models (PWL).
Understanding the geometry of finite hyperplanes will provide deeper insights into the combinatorial essence of
these problems.

A dissection of RD by a finite number of hyperplanes is called a hyperplane arrangement. At first glance, a
hyperplane arrangement might seem to contain more information or structure than a set of data points (a point
configuration). However, a valuable approach to studying geometric objects involving points and hyperplanes is to
explore the transformations between these two objects. By studying the dual transformation between point config-
uration and hyperplane arrangement, we will see later that the superficial impression of the structural information
contained in hyperplane arrangement and point configuration is incorrect. Both hyperplane arrangements and point
configurations possess equally rich combinatorial structures.

Our goal in this chapter is to demonstrate that applying geometric principles can provide new insights and
interpretations into the combinatorics of various combinatorial problems that involve finite hyperplanes and finite
data points.

II.3.1 Foundations
Algebraic geometry is the study of the solutions of systems of polynomial equations and the geometric structures
that these solutions form. It combines techniques from abstract algebra, particularly commutative algebra, in the
context of geometry.

The primary objects of study in algebraic geometry are algebraic varieties, which are sets of solutions to poly-
nomial equations. These polynomial equations can define simple curves or more complex structures like surfaces
or higher-dimensional analogues. In the simplest case, the polynomial systems involve only degree-one polynomials
(linear functions), which can be understood as hyperplanes, which will be the central focus of our discussion.

In this section, we provide a brief introduction to the foundational geometric definitions that will be frequently
used in our discussion. Throughout the discussion, we limit our focus to Euclidean space over the real closed field
R.

II.3.1.1 Affine varieties and polynomials

We denote both the affine D-space and the vector D-space over R as RD, both of them are the set of all D-
tuples of elements of R. To distinguish a vector in the vector space and a point in affine space, an element
x = (x1, x2 . . . , xD) ∈ RD will be called a point in the affine space RD, an element x = (x1, x2 . . . , xD)

T ∈ RD is
called a vector in the vector space RD, where xi is called the coordinate of x.

Definition 17. Monomial. A monomial with respect to a D-tuple x = (x1, x2 . . . , xD) is a product of form

M = xα = xα1
1 · xα2

2 . . . · xαD

D , (79)

where α = (α1, α2 . . . , αD), α1, α2 . . . , αD are nonnegative integers. The total degree of this monomial is the sum
|α| = α1 + · · ·+ αn. When α = 0 = (0, . . . , 0), x0 = 1.

Definition 18. Polynomial. A polynomial P in x1, x2 . . . , xD with coefficients in R is a finite linear combination
(with coefficients in R (field)) of monomials. We will write a polynomial P (x), or P in short, in the form

P (x) =
∑
i

wix
αi , wi ∈ R, (80)

where i is finite. The set of all polynomials with variables x1, x2 . . . , xD and coefficients in R is denoted as
R [x1, x2 . . . , xD] or R [x] if variables x = (x1, x2 . . . , xD).

Let P =
∑

i wix
αi be a polynomial in R [x], we call αithe coefficient of the monomial xαi . If wi 6= 0, then we

call wix
αi a term of P . The maximal degree of P , denoted deg (P), is the maximum |αi| such that the coefficient

ai is nonzero. For instance, the polynomial P (x) = 5x21 + 3x1x2 + x22 + x1 + x2 + 3 for x ∈ R2has six terms and
maximal degree two.

95

The number of possible monomial terms of a degree K polynomial is equivalent to select K variables from
the multisets of D + 1 variables14. This is again equivalent to the size K combinations of D + 1 elements with
replacement. In other words, we need to select K variables from variables set (x0, x1, . . . , xD) in homogeneous
coordinate with repetition, and we have the following fact.

Fact 5. If polynomial P in R [x1, x2 . . . , xD] has maximal degree K, then polynomial P has
(
D +K
D

)
monomial

term at most.

As an example, a polynomial in R [x1, x2] with maximal degree 2 (a 2-dimensional conic section) has 6 terms at
most (including the constant term).

Under addition and multiplication, R [x1, x2 . . . , xD] satisfies all of the field axioms except for the existence of
multiplicative inverses, hence it is a commutative ring, called polynomial ring.

When we have a polynomial P ∈ R [x], we can talk about the set of zeros of P , namely
V (P) =

{
(x1, x2 . . . , xD) ∈ RD : P (x1, x2 . . . , xD) = 0

}
. Geometrically, the zeros set of a polynomial P determines

a subset of RD, this subset is called surface and it has dimensionality smaller than D, and it is called hypersurface
if it has dimension D − 1. Specifically, if this subset is an affine subspace defined by a degree-one polynomial, it is
referred to as a flat. A D − 1-dimensional affine flat is known as a hyperplane.

More generally, we want to know the intersection of the zeros sets for a set of polynomials, which is equivalent
to the intersection set of their corresponding surfaces in RD. This intersection set is called algebraic variety. We
can define it formally as follows.

Definition 19. Algebraic variety. Given a set of polynomial P = {Pi : i ∈ I} in R [x1, x2 . . . , xD], where I =
{1, 2, . . . I} is the index set for the polynomial. Then the set

V ar (P) =
{
(x1, x2 . . . , xD) ∈ RD : Pi (x1, x2 . . . , xD) = 0, ∀i ∈ I

}
, (81)

is called the affine variety defined by P.

In particular, the algebraic variety for one polynomial Pi is a surface denoted as Si =
{
x ∈ RD : Pi (x) = 0

}
,

and the algebraic variety for a degree-one polynomial is a hyperplane, denoted as Hi =
{
x ∈ RD : wTx = c

}
.

II.3.1.2 Arrangements

In this Subsection, we review basic terminology and combinatorics of the arrangement of the hypersurface and
hyperplane.

Definition 20. Surface arrangement. Given a system of polynomials P = {Pi : i ∈ I}. A finite surface arrangement
SP = {Si : i ∈ I}, where Si =

{
x ∈ RD : Pi (x) = 0

}
, is a finite set of surfaces defined by polynomial system P.

We call P a central surface arrangement, if the coefficient w for the zero degree term wx0 equal to zero.

In particular, if these surfaces are hyperplanes (with dimension D − 1 and maximal degree-one), we obtain the
definition of hyperplane arrangement.

Definition 21. Hyperplane arrangement. A finite hyperplane arrangement H = {Hi : i ∈ I} is a finite set of
hyperplanes Hi =

{
x ∈ RD : wT

i x = bi
}

in RD for some constant bi ∈ R, where w is called the normal vector of
hyperplane Hi. We call H a central hyperplane arrangement, if bi = 0 for all i ∈ I.

In particular, a hyperplane H =
{
x ∈ RD : wTx = c

}
is called affine hyperplane if c 6= 0 , and linear hyperplane

if c = 0.

A vitally important assumption in the study of arrangements is called general position. It means the general
case situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special
position.

A set of polynomials P = {Pi | i ∈ I} in D variables is in general position if no D+1 polynomial has a common
zero. In the special case of degree-one polynomials, the definition of general position for the hyperplane arrangement
is defined as below.

14There are D + 1 variables if we consider polynomial in homogeneous coordinate, i.e., projective space PD

96

Definition 22. General position for hyperplanes. A hyperplane arrangement H = {Hi : i ∈ I} is in general linear
position (or general position in short) if

{H1, ..., Hk} ∈ H, 1 ≤ k ≤ D =⇒ dim (H1 ∩ · · · ∩Hk) = D − k, (82)
where dim (H1 ∩ · · · ∩Hk) is the dimension of the set H1 ∩ · · · ∩Hk and

{H1 ∩ · · · ∩Hk} ∈ H, k > D =⇒ H1 ∩ · · · ∩Hk = {∅} . (83)

A hyperplane arrangement H is in general position if the intersection of any k hyperplanes is contained in a
(D − k)-dimensional flat, for 1 ≤ k ≤ D. For example, if D = 2 then a set of lines is in general position if no two
are parallel and no three meet at a point. A hyperplane arrangement in general position is also called a simple
hyperplane arrangement. From a linear algebra perspective, a hyperplane arrangement H is simple if only the
normal vectors of every D hyperplanes in H are linearly independent.
Definition 23. Sign vector and hyperplane arrangement. Given a hyperplane arrangement H = {Hi : i ∈ I}. We
denote with H+

i =
{
x ∈ RD : wT

i x > bi
}

, H−
i =

{
x ∈ RD : wT

i x < bi
}

the open sets “above” or “below” Hi. We
associate to each point x ∈ RD, the sign vector of data point x with respect to arrangement H is denoted as
signH (x) = (δ1 (x) , δ2 (x) , . . . , δI (x)), where δi is defined as

δi (x) =

+1 x ∈ H+

i

0 x ∈ Hi

−1 x ∈ H−
i

, 1 ≤ i ≤ I. (84)

Similarly, for more general case, we denote S+
i =

{
x ∈ RD : Pi (x) > 0

}
, S−

i =
{
x ∈ RD : Pi (x) < 0

}
as the

open sets “above” or “below” hypersurface Si. Also, the sign vector of data point x with respect to hypersurface
arrangement SP is denoted as signSP

(x) = (δ1 (x) , δ2 (x) , . . . , δI (x)), or just signS if the polynomial system P is
clear from the context.

The main focus of this thesis is the discussion on hyperplane arrangements. In particular, we are interested
in the connected components (regions) intersected by hyperplanes. These connected regions are the faces of an
arrangement, which is defined as follows.
Definition 24. Faces of a hyperplane arrangement. We denote by FH the set of all sign vectors signH (x) in RD

for arrangement H, which is defined as

FH =
{

signH (x) : x ∈ RD
}
, (85)

A face f (connected component) of an arrangement f ⊆ RDis a subset of RD, such that all x ∈ f has the same
sign vector signH (x) ∈ FH. Given a sign vector signH (x) = (δ1 (x) , δ2 (x) , . . . , δI (x)), the connected region of f
can be defined as f =

⋂
i∈I H

δi(f)
i . In fact, f defines an equivalence class in RD. Since any point x ∈ f has the

same sign vector, we denote signH (f) as the sign vector for any point in f .
Different vectors in FH define different faces of the arrangement H. We call a face k-dimensional if it is contained

in a k-flat for −1 ≤ k ≤ D + 1. Some special faces are given the name vertices (k = 0), edges (k = 1), and cells
(k = D). A k-face g and a (k − 1)-face f are said to be incident if f is contained in the closure of face g, for
1 ≤ k ≤ D. In that case, face g is called a superface of f , and f is called a subface of g.

We assume all flats or hyperplanes considered in this thesis are non-vertical, a flat is called vertical if it contains
a line parallel to the axis.

II.3.1.3 The combinatorial complexity of the arrangements

Before we study the theory of arrangements, we first investigate the combinatorial complexity of hyperplane and
hypersurface arrangements, and these results will become useful when we analyze the combinatorial complexity of
the problem.
Theorem 7. Faces counting theorem for hyperplanes. Let H = {Hn : n ∈ N} be a hyperplane arrangement in RD,
The number of k-dimensional faces in the arrangement H, for 1 ≤ k ≤ D, is

FD (H) =

k∑
i=0

(
D − i
k − i

)(
N

D − i

)
. (86)

The maximum is attained exactly when H is simple [Toth et al., 2017].

97

Figure II.3.1: An arrangement of four lines in R2. Four lines intersect such that no three lines meet at a single point.
This arrangement divides the plane into three closed regions (bounded cells) and eight open regions (unbounded cells).

A special case of (86) is when k = D, we obtain the following lemma for counting the number of cells of an
arrangement.

Lemma 4. Cell counting formula. Let H = {Hn | n ∈ N} be a non-central and simple arrangement in RD, the
number of cells (D-dimensional faces) in the arrangement H is

CD (H) ≤
D∑

d=0

(
N
d

)
. (87)

For any central arrangement H of N hyperplanes in RD, the number of cells (D-dimensional faces) in the arrange-
ment H is

CD (H) ≤ 2

D−1∑
d=0

(
N − 1
d

)
. (88)

The maximum is attained exactly when H is simple [Fukuda, 2016].

For instance, the non-central arrangement of four lines shown in Fig. II.3.1 has 11 cells.
The cell counting formula for central arrangements (88) is, in fact, equivalent to the well-known Cover’s di-

chotomies counting formula[Cover, 1965], which is well-known in machine learning communities. This formula
states that, given a data set D of size N in general position in RD, the number of dichotomies (linearly separable
predictions by affine hyperplane) is given by:

Cover (N,D + 1) = 2

D∑
d=0

(
N − 1
d

)
(89)

Astute readers may notice that in this summation, the upper limit is D rather than D − 1, as seen in (88). This
difference arises because a dataset in the general position in RD is isomorphic to a central arrangement in RD+1.
The relationship between Cover’s dichotomies counting formula and the cell counting formula will be revisited in
the discussion on point-hyperplane duality.

The cells in an arrangement can be further split into two classes, the bounded cells and unbounded cells. Infor-
mally, a cell is called bounded if it is a closed region surrounded by hyperplanes (the boundaries are not contained in
cells), and unbounded otherwise. In particular, given a fixed number of hyperplanes in RD, the number of bounded
and unbounded cells is fixed, we can calculate the number of bounded cells by the following Lemma [Stanley et al.,
2004].

Lemma 5. Let H = {Hn | n ∈ N} be a hyperplane arrangement in RD, The number of bounded cells in the
arrangement H is

BD (H) ≤
(
N − 1
D

)
. (90)

The maximum is attained exactly when H is simple.

As depicted in Fig. II.3.1. In a simple arrangement of four lines, the number of bounded cells is three.

98

Theorem 8. Asymptotic complexity for hypersurface arrangements. Given an arrangement of surfaces SP =
{Sn : n ∈ N} in RD defined by polynomial P = {Pn : n ∈ N}, as defined above, the maximum combinatorial
complexity of the arrangement SP is O

(
ND

)
. There are such arrangements whose complexity is Θ

(
ND

)
. The

constant of proportionality in these bounds depends on D and on the maximal degree of the P15. The asymptotically
highest complexity is obtained when the surfaces are in general positions [Sharir, 1994].

II.3.1.4 Points and hyperplanes duality

The concept of duality in geometry establishes a profound relationship between points and hyperplanes, revealing
their inherent one-to-one correspondence. By constructing a dual transformation, points can be systematically
mapped to hyperplanes and vice versa, while preserving incidence relations between them.

In an affine space, a point configuration is a set of data points p = (p1, p2, . . . , pn) ∈ RD, n ∈ N = {1, . . . , N}.
When we fix an origin, a point configuration becomes a set of vectors, which is equivalent to the data set that we
defined previously, thus we denote a point configuration as D = {pn : n ∈ N}.

A point configuration also has a definition for general position: a set of points in D-dimensional affine space is
in general position if no k of them lie in a (k − 2)-dimensional affine subspace of RD, for k = 2, 3, ..., D + 1. We
will see shortly, this definition is equivalent to that of general position for hyperplane arrangements.

The dual transformations between a hyperplane and a point are established in the following definition.

Definition 25. Duality for affine arrangement. The geometric dual transformation ϕ : RD → RD maps a point p
to a non-vertical affine hyperplane ϕ (p), defined by the equation

p1x1 + p2x2 + ...+ pD−1xD−1 − xD = pD, (91)

and conversely, the function ϕ−1 transforms a (non-vertical) hyperplane H defined by polynomial w1x1 + w2x2 +

...+ wD−1xD−1 − xD = wD to a point ϕ−1 (H) = (w1, w2, . . . , wD)
T .

We use the terms primal space, and dual space to refer to the spaces before and after transformation by ϕ and
ϕ−1. The dual transformation is naturally extended a set of points ϕ (D) and a set of hyperplanes ϕ (H) by applying
it to all points and hyperplanes in the set. We sometimes denote the dual hyperplane arrangement of points set D
as HD and the dual point configuration of H as DH.

Theorem 9. The Incidence relations of dual transformation. Given p be a point and a non-vertical affine hyperplane
H =

{
x : wTx = 0

}
in RD. Under the dual transformation ϕ, p and H satisfy the following properties:

1. Incidence preservation: point p belongs to hyperplane H if and only if point ϕ−1 (H) belongs to hyperplane
ϕ (p) = p,

2. Order preservation: point p lies above (below) hyperplane H if and only if point ϕ−1 (H) lies above (below)
hyperplane ϕ (p).

The dual transformation preserves the incidence relations can be proved by examining the relationship between
the dual transformation ϕ and the unit paraboloid [Edelsbrunner, 1987].

The incidence preservation property described above implies a duality between the definitions of general position
for point configurations and hyperplane arrangements. For instance, when D = 2, three points lying in the same
1-flat l (a line) correspond to three lines in the dual space intersecting at the same point ϕ (l), these three lines are
mutually parallel if the line l is vertical.

II.3.1.5 Voronoi diagram

The Voronoi diagram of a finite set of objects is another important geometric structure in machine learning,
combinatorial geometry and many fields of computer science. The applications of the Voronoi diagram are concerned
specifically with problems involving the “closeness” of points in a finite set. A number of seemingly unrelated
problems involving the proximity of N points, such as finding a Euclidean minimum spanning tree, the smallest circle
enclosing the set, K-nearest and farthest neighbors, the two closest points, and a proper straight-line triangulation
[Shamos and Hoey, 1975], can be solved efficiently by using Voronoi diagram.

The Voronoi diagram subdivides the embedding space into regions, each region consisting of the points that are
closer to a given object than to the others. This closeness is defined by the following distance functions.

15However, if the maximal degree of the P is very high, there will be a very large constant term in the exponent hided by the big O
notation

99

Figure II.3.2: An Euclidean Voronoi diagram in R2. The black points represent the centroids of each Voronoi cell
(connected regions in R2), and the black lines denote the boundaries of the connected regions.

Definition 26. Distance functions. The distance between two points x = (x1, x2, ..., xD)
T
,y = (y1, y2, ..., yD)

T ∈
RD, is denoted by d (x,y) and it must satisfy the following properties:

1. Coincidence: d (x,x) = 0,

2. Triangle inequality: d (x,y) ≤ d (x,x′) + d (x′,y) , ∀x,x′,y ∈ D.

Note that, some textbooks might also include the symmetry and non-negative properties, but these two properties
can be derived from the above two properties [Gower and Legendre, 1986]. The well-known Lp metric is defined as

dp (x,y) =

(
D∑
i=1

|yi − xi| |p
)1/p

. (92)

A special case of this metric is the Euclidean distance or L2 distance is defined as

d2 (x,y) = ‖x− y‖22 = ‖y − x‖22 =

√√√√ D∑
i=1

(yi − xi)
2
, (93)

similarly we have L1 distance

d1 (x,y) = ‖y − x‖1 = |y − x| = |y − x| =
D∑
i=1

|yi − xi| . (94)

Definition 27. Voronoi diagram. Given a set of centroids D = {x1,x2, . . . ,xN} in RD, the Voronoi diagram V (D)
of is defined by a set of regions V (D) = {V1, V2, . . . , VN}, where Vn, n ∈ N is a subspace of RD which consists of all
points closer to centroids xn than any other centroids in D. In other words, the data set D partition the ambient
space RD into Voronoi regions/polygons V (D) = {V1, V2, . . . , VN} defined by

Vn =
{
x ∈ RD | d (x− xn)

2 ≤ d (x− xj)
2
, ∀n, j ∈ N ∧ k 6= j

}
. (95)

We can safely assume no data lies on the boundaries of any two adjacent Voronoi regions, and ignore the equality
in the below discussion.

The Voronoi diagram/partition defined on Euclidean distance is called Euclidean Voronoi diagram. An example
of Euclidean Voronoi diagram is depicted in Fig. II.3.2. We may define various variants of Voronoi diagrams
depending on the class of objects, the distance function and the embedding space. For instance, when the distance
function in a Voronoi diagram is defined by a Bregman divergence, it is referred to as a Bregman Voronoi diagram.
In this thesis, however, we will focus on investigating the Euclidean Voronoi diagram in more detail.

100

++++

+---

++--

+--+

+++-

-++-

-+--

++-+

---+
--+- 1

𝑤1
𝑤2

𝑤3

𝜙(𝑤1)

𝜙(𝑤2)

𝜙(𝑤3)
𝑤4

𝑤5
𝜙(𝑤4)

𝜙(𝑤5)

𝑝1 ∈ ℝ

𝑝2 ∈ ℝ 𝑥2 ∈ ℝ

𝑥1 ∈ ℝ

𝜙:∈ ℝ𝐷→ℝ𝐷
2

34

2

1

3
4

Figure II.3.3: A point configuration D (left-panel) and its dual arrangement HD (right-panel). The yellow hyperplanes
w4, w5 with two points lies on it in RD corresponds to the yellow points in the dual space, which is the intersection
of corresponding dual hyperplanes ϕ (w4), ϕ (w5). For (blue) hyperplanes w1, w2, w3 with the same prediction labels
(+,+,−,−), their corresponding dual points ϕ (w1), ϕ (w2), ϕ (w2) lies in the same cell of dual arrangement ϕ (D).

II.3.2 Classification problems and duality
The classification problems, especially the linear classification problems, are the central theme of machine learning
studies. The effectiveness of a linear classifier depends on the algorithm’s ability to construct a good linear model
(linear decision boundary) for prediction. Given a set of data, each linear model corresponds to a specific linear
dichotomy(linearly separable predictions), determined by the incidence relations between the data points and the
decision hyperplane. Importantly, this incidence relation can be analyzed through the dual transformation ϕ.

In this section, we will first explore the geometric relationships between points, hyperplanes, and dichotomies,
focusing on their combinatorial complexity and incidence relations. By analyzing the incidence relations between
data points and hyperplanes, we gain a new perspective on the linear classification problem. This perspective can
facilitate the development of an efficient and general algorithm capable of solving linear classification problems with
arbitrary objectives. Then we will generalize our discussion to non-linear (polynomial hypersurface) classification
problems.

II.3.2.1 Linear classification and duality

Previously, we have introduced that the combinatorial complexity of linear dichotomies with respect to data set
D is given by (89). However, Cover’s theorem only provides insights into the combinatorial complexity of possible
dichotomies. How to enumerate these dichotomies remains an open problem.

Indeed, in our previous studies [He and Little, 2023], we showed that the possible dichotomies with respect
to a given data set D can be equivalently obtained by enumerating the cells of the dual arrangement HD. This
result is a consequence of the Thm. 9. The order preservation property of the dual transformation ϕ reveals a
topological equivalence between the dual space and the primal space. It can be difficult to visualize how Cover’s
dichotomies form equivalence classes for decision hyperplanes, but the same decision hyperplanes in the dual space
ϕ (p), ∀p ∈ RD partition the space into different cells, where each cell corresponds to an equivalence class of
dichotomies (Fig. II.3.3).

In this Subsection, we begin by analyzing how the combinatorial complexity of cells—both bounded and
unbounded—relates to dichotomies. This will offer insights into how these concepts are interconnected and also
provide a counting argument for the algorithms that we design.

We have previously explained that the possible dichotomies for data set in RD is equivalent to the number of
cells of a central arrangement in RD+1. Next, we explain the correspondence between Cover’s dichotomies and the
cells of a dual arrangement HD, which offers an alternative approach to proving Cover’s counting theorem.

Lemma 6. For a set points D =
{
xn ∈ RD : n ∈ N

}
in general position, the total number of linear dichotomies

in Cover’s function counting theorem, is the same as the number of cells of the dual arrangement HD, plus the
number of bounded cells of HD.

101

Proof. Given a set of points D =
{
xn ∈ RD : n ∈ N

}
in general position. Cover, 1965’s function counting theorem

states the number of linear separable dichotomies given by affine hyperplanes is

Cover (N,D + 1) = 2

D∑
d=0

(
N − 1
d

)
. (96)

The original Cover’s function counting theorem counts the number of linear separable dichotomies given by linear
hyperplanes. However, the dual arrangement HD consists of a set of affine hyperplanes. Nevertheless, the number
of dichotomies given by affine hyperplanes in RD for data set D is equivalent to the number of dichotomies given
by linear hyperplanes for data set D̄ in RD+1(D̄ is the homogeneous dataset, which is obtained by embedding D in
homogeneous space)

In Subsection II.3.1.3, we have shown that for a simple arrangement H = {Hn : n ∈ N} in RD, the number of

cells is CD (H) =
∑D

d=0

(
N
d

)
, and the number of bounded regions is BD (H) =

(
N − 1
D

)
.

Putting these information together, we obtain

BD (HD) + CD (HD) =

(
N − 1
D

)
+

D∑
d=0

(
N
d

)

=

(
N − 1
D

)
+

D∑
d=0

[(
N − 1
d

)
+

(
N − 1
d− 1

)]

=

D∑
d=0

(
N − 1
d

)
+

D∑
d=0

(
N − 1
d

)

=2

D∑
d=0

(
N − 1
d

)
=Cover (N,D + 1) .

(97)

The equivalence between the number of dichotomies and the sum of bounded and unbounded cells may initially
seem unclear. The intuition lies in the fact that not every dichotomy in the primal space corresponds to a cell in
the dual space. Specifically, decision boundaries associated with unbounded cells correspond to two dichotomies,
whereas those associated with bounded cells correspond to only one. This relationship is clarified by the following
lemma.

Lemma 7. For a data set D in general position, each of Cover’s dichotomies corresponds to a cell in the dual
space, and dichotomies corresponding to bounded cells have no complement cell (cells with reverse sign vector).
Dichotomies corresponding to the unbounded cells in the dual arrangements ϕ (D) have a complement cell.

Proof. The first statement is true because of the order preservation property – data item x lies above (below)
hyperplane H if and only if point ϕ−1 (H) lies above (below) hyperplane ϕ (x). For a data set D and hyperplane H,
assume H has a normal vector w (in homogeneous coordinates) and there is no data item lying on H. Then, hyper-
plane H will partition the set D into two subsets D+

H =
{
xn : wTx > 0

}
and D−

H =
{
xn : wTx < 0

}
, and according

to the Thm. 9, D has a unique associated dual arrangement ϕ (D). Thus, the sign vector of the point ϕ−1 (H) with
respect to arrangement ϕ (D) partitions the arrangement into two subsets ϕH (D)

+
=
{
ϕ (xn) : ν

T
ϕ(xn)

ϕ−1 (H) > 0
}

and ϕH (D)
−

=
{
νT
ϕ(xn)

ϕ−1 (H) < 0
}

, where νT
ϕ(xn)

is the normal vector to the dual hyperplane ϕ (xn), in other
words, point ϕ−1 (H) lies in a cell of arrangement ϕ (D).

Next, we need to prove that bounded cells have no complement cell. The reverse assignment of the bounded cells
of the dual arrangements ϕ (D) cannot appear in the primal space since the transformation ϕ can only have normal
vector ν pointing in one direction, in other words, transformation ϕ: xD = p1x1 + p2x2 + ... + pD−1xD−1 − pD
implies the Dth component of normal vector ν is −1. For unbounded cells, in dual space, every unbounded cell
f associates with another cell g, such that g has an opposite sign vector to f . This is because every hyperplane
ϕ (xn) is cut by another N − 1 hyperplanes into N + 1 pieces (since in a simple arrangement no two hyperplanes
are parallel), and each of the hyperplanes contains two rays, call them r1,r2. These two rays point in opposite
directions, which means that the cell incident with r1 has an opposite sign vector to r2 with respect to all other

102

N − 1 hyperplanes. Therefore, we only need to take the cell f incident with r1, and in the positive direction with
respect to ϕ (xn), take g to be the cell incident with r2, and in the negative direction with respect to ϕ (xn). In this
way, we obtain two unbounded cells f and g with opposite sign vectors. It means that, for point ϕ−1 (H) in these
unbounded cells, this hyperplane H partition the data set to D+

H and D−
H , we can move the position of hyperplane

H in the primal space, there exists a new hyperplane H ′ by moving H, it partitions the data set to D+
H′ = D−

H and
D−

H′ = D+
H . In other words, H ′ has the opposite assignment compared to hyperplane H. This corresponds, in the

dual space, to moving a point ϕ−1 (H) inside the cell f , to cell g. For instance, in the simplest case, we can move
a hyperplane from the left-most to the right-most to obtain an opposite assignment without changing the direction
of the normal vector.

Since each of Cover’s dichotomies corresponds to a cell in the dual space, and dichotomies corresponding to
bounded cells have no complement cell (cells with reverse sign vector). Lemma 7 demonstrates that all possible
Cover’s dichotomies of a given data set D can be obtained by enumerating the cells of an arrangement and the
complemented cells of the bounded cells. Thus we immediately have the following theorem.
Theorem 10. Linear classification theorem. Given a data set D in general position in RD. If an O

(
ND

)
time

cell enumeration algorithm exists, then exact solutions for the linear classification problem with an arbitrary ob-
jective function can be obtained in at most O

(
teval ×ND

)
time by exhaustively enumerating the cells of the dual

arrangement HD, where teval represents the time required to evaluate the objective.
The next lemma explains not only that Cover’s dichotomies have corresponding dual cells for the dual hyperplane

arrangement, but also that hyperplanes containing 0 ≤ k ≤ D data points have corresponding dual faces.
Lemma 8. For a data set D in general position, a hyperplane with k data items lies on it, 0 ≤ k ≤ D correspond
to a (D − k)-face in the dual arrangement HD. Hyperplanes with D points lying on it, corresponding to vertices in
the dual arrangement.
Proof. According to the incidence preservation property, k data items lying on a hyperplane will intersect with k
hyperplanes, and the intersection of k hyperplanes will create a (D−k)-dimensional space, which is a (D − k)-face,
and the 0-faces are the vertices of the arrangement.

Definition 28. Separation set. Given a hyperplane arrangement H = {Hn : n ∈ N}The separation set sep (f, g)
for two faces f , g is defined by

sep (f, g) = {n ∈ N : δn (f) = −δn (g) 6= 0} , (98)
using which, we say that the two faces f , g are conformal if sep (f, g) = ∅.

Two faces that are conformal is essentially the same as saying that two faces have consistent assignments.
Lemma 9. Given a hyperplane arrangement H = {Hn : n ∈ N}, two faces f , g are conformal if and only if f and
g are subfaces of a common proper cell or one face is a subface of the other.

A similar result is described in oriented matroid theory [Björner, 1999].
The following lemma will be instrumental in our analysis of the linear classification problem with the 0-1 loss

objective. It suggests that the optimal cell, with respect to 0-1 loss, is conformal to the optimal vertex.
Lemma 10. Given a hyperplane arrangement H = {Hn : n ∈ N}, for an arbitrary maximal face (cell) f , the sign
vector of f is signH (f). For an arbitrary (D − d)-dimension face g, 0 < d ≤ D, the number of different signs of
signH (g) with respect to signH (f) is larger than or equal to d, where equality holds only when g is conformal to f
(g is a subface of f).
Proof. Define the number of different signs of signH (g) with respect to signH (f) as E0-1 (g). In a simple arrange-
ment, the sign vector signH (f) of a cell f has no zero signs, and a (D − d)-dimension face has d zero signs. Thus
the number of different signs of signH (g) with respect to signH (f) must larger than or equal to d, i.e., E0-1 (f) ≥ d.
If the sep (f, g) = ∅, then E0-1 (g) = d according to definition of sep (f, g) = ∅. In this case, f , g are conformal. In
contrast, if f , g are not conformal, i.e., sep (f, g) 6= ∅, and assuming |sep (f, g)| = C, according to the definition
of the objective function and conformal faces, E0-1 (signH (f)) = d + C. Hence, E0-1 (signH (g)) ≥ d, and equality
holds only when g is conformal to f .

In the linear classification problem with the 0-1 loss objective, Lemma 10 will later be used to prove Thm. 13.
This theorem states that the optimal decision boundary is adjacent to the decision boundary that includes D data
points, and that the optimal classification predictions is consistent with the predictions of this optimal boundary
with D points lies on it. Since there are only

(
N
D

)
such hyperplanes, we can solve the 0-1 loss linear classification

problem in polynomial time.

103

II.3.2.2 Growth function and the complexity classification problem

In the study of foundational machine learning theory, known as statistical learning theory. A vitally important
concepts is called the growth function, which measures the complexity of a given hypothesis set, recall that a
hypothesis set is a set of functions mapping data set D to the set of predicted labels, for linear classification
problem, the hypothesis set is just the set of all decision hyperplanes in the space.

Definition 29. Growth function. The growth function ΠH : N → N (N stands for nature numbers) for a hypothesis
set H defined by

∀N ∈ N,ΠH (N) = max
{xn:n∈N}

∣∣{sign
(
wT x̄n

)
: w ∈ RD+1

}∣∣ , (99)

In other words, ΠH (N) is the maximum number of distinct ways in which N points can be classified using
hypotheses in H, i.e., the number of dichotomies can be realized by hypothesis.

The next result, known as Sauer’s lemma, clarifies the connection between the notions of growth function and
VC-dimension [Mohri et al., 2018]. The VC-dimension is a key measure of the complexity of a classification model.
The simpleD-dimensional linear hyperplane classification model, which we discuss in detail below, has VC-dimension
D + 1. This is lower than that of other widely used models, such as the decision tree model l (axis-parallel hyper-
rectangles), which has a VC-dimension of 2D; the K-degree polynomial, which has a VC-dimension of O

(
DK

)
;

and the L-layer, W -weight piecewise linear deep neural networks, which have a VC-dimension of O (WL log (W))
[Blumer et al., 1989, Bartlett et al., 2019, Vapnik, 1999].

Lemma 11. Sauer’s lemma. Let H be a hypothesis set with VCdim (H) = D. Then, for all N ∈ N, the following
inequality holds

ΠH (N) ≤
D∑

d=0

(
N
d

)
. (100)

It is clear that when VCdim (H) = D + 1, for N data points in D-dimensional space, the Cover’s functional
counting theorem satisfies the above inequality

Cover (N,D + 1) =2

D∑
d=0

(
N − 1
d

)

=

D∑
d=0

(
N − 1
d

)
+

D∑
d=0

(
N − 1
d

)

≤
D∑

d=0

(
N − 1
d+ 1

)
+

D∑
d=0

(
N − 1
d

)

=

D+1∑
d=0

(
N

d+ 1

)
.

(101)

Since the right-hand side of the (100) is always polynomially large when the VC-dimension of the hypothesis set is
finite, it tells us that we can always construct a polynomial-time exact classification algorithm for any hypothesis
set with finite VC-dimension.

In the next section, we will show that a polynomial hypersurface is isomorphic to a hyperplane in a higher-
dimensional space. This will enable a more precise analysis of the combinatorial complexity of hypersurfaces.
Furthermore, the isomorphism between hyperplanes and hypersurfaces allows us to extend Thm. 10 from linear
classification problems to polynomial hypersurface classification problems. This extension allows us to construct an
algorithm that can find an optimal non-linear (polynomial hypersurface) classifier in polynomial time.

II.3.2.3 Non-linear (polynomial) classification and Veronese embedding

Based on the point-hyperplane duality, we successfully establish equivalence relations for linear classifiers on finite
sets of data. However, a linear classifier is often too restrictive in practice, as many problems require more complex
decision boundaries. It is natural to ask whether we can extend our theory to non-linear classification? In this
section, we explore a well-known concept in algebraic geometry, the W -tuple Veronese embedding, which allows us
to generalize our previous strategy for solving classification problem with hyperplane classifier to problems involves

104

hypersurface classifiers, with a worst-case time complexity O
(
NG

)
, where G =

(
D +W
D

)
− 1, and W is the

degree of the polynomial for defining the hypersurface. If both W and D are fixed constant, this again gives us a
polynomial algorithm for solving the 0-1 loss hypersurface classification problem.

In algebraic geometry, an embedding is a morphism ρ of an algebraic variety V , such that the variety V is
isomorphic to its image ρ (V). In Exercise 2.12 and Exercise 3.4, Chapter I of Hartshorne [2013], the following
embedding in projective space is demonstrated.

Definition 30. The W -tuple Veronese embedding. Given variables x0, x1, . . . xD in projective space PD (which
is isomorphic to the affine space RD if we forget the points at infinity [Cox et al., 1997]), let M0,M1, . . .MG

be all monomials of degree W with variables x0, x1, . . . xD, where G =

(
D +W
D

)
− 1. We define a mapping

ρW : PD → PG by sending the point p̄ = (p0, p1, . . . pD) ∈ PD to the point ρW (p̄) = (M0 (p̄) ,M1 (p̄) , . . .MG (p̄)).
This is called the W -tuple Veronese embedding of PD in PG.

This embedding introduces the following isomorphism. Although there are
(
D +W
D

)
coefficients in PG,

there must exists one monomial with coefficients that are all zero, in other words, it is a constant, because of the
homogeneity, so scaling removes one dimension; concretely, setting one of the coefficients to one accomplishes this.

Lemma 12. The W -tuple of PD is an injective isomorphism onto its image.

Proof. see exercise 3.4, chapter I [Hartshorne, 2013].

A consequence of this lemma states that, a hyperplane H ∈ PG defined as w0y0 + w1y1 + . . .+ wGyG = 0, will
containing points x̄ = (x0, x1, . . . xD) ∈ PD such that w0M0 (x̄)+w1M1 (x̄)+ . . .+wGMG (x̄) = 0. In other words,
a W -degree polynomial in dimension PD is isomorphic to a hyperplane in PG.

Example 7. Given a conic section in affine space R2 (with variables x1, x2), defined by polynomial equation
w0x

2
1 + w2x

2
2 + w3x1x2 + w3x1 + w4x2 + w5 = 0. This polynomial is equivalent to the polynomial w0x

2
1 + w2x

2
2 +

w3x1x2 + w3x1x0 + w4x2x0 + w5x
2
0 = 0 in projective space P2 (with variables x0, x1, x2). This conic section

isomorphic to a hyperplane H in P5 (y0, y1, y2, y3, y4, y5), namely the hyperplane defined by equation w0y0 +
w1y1 + . . .+ w4y4 + w5y5 = 0.

This explains why 5 points can determine a conic section in R2, because a conic section (conic section corresponds
to polynomial of degree 2) in R2 is isomorphic to a hyperplane in R5.

Therefore, by showing that the degree W -polynomial in D-dimensional space is isomorphic to a hyperplane in
G =

(
D +W
D

)
− 1 space. Since the hyperplane have duality, the hypersurface corresponds to it also have the

duality. Therefore, we can generalize the Linear Classification Theorem 10 to the following hypersurface case.

Theorem 11. Hypersurface classification theorem. Given a data set D in general position in RD. Assume teval
is the time required to evaluate the objective value. The exact solutions for hypersurface classification problem
with an arbitrary objective function, such that the hypersurface is defined by a degree W polynomial, can be
obtained in at most O

(
teval ×NG

)
time by enumerating the cells of the dual arrangement HD̃, where D̃ = ρW

(
D
)

denotes the dataset obtained by transforming each data x̄ ∈ PD to its W -tuple Veronese embedding ρW (x̄) =
(M0 (x̄) ,M1 (x̄) , . . .MG (x̄)) ∈ PG (which is equivalent to a point (1,M1 (x̄) , . . .MG (x̄)) ∈ RG+1).

II.3.3 Methods for cell enumeration
We have seen that the key to solving linear classification problems lies in finding the optimal dichotomy, which can be
achieved by enumerating all possible cells of the dual arrangement. Beyond the linear classification problem, it turns
out that many otherwise intractable combinatorial optimization problems can also be solved exactly by enumerating
the cells of an arrangement. For instance, it has been shown that both the integer quadratic programming problem
[Ferrez et al., 2005] and the 0-1 loss linear classification problem [He and Little, 2023], can be solved exactly
through cell enumeration. The applications of integer quadratic programming are extensive, with the well-known
sparse regression problem [Bertsimas et al., 2020] being a notable example. Furthermore, many machine learning
problems discussed in this thesis, such as K-means clustering and linear classification, can also be solved exactly
by enumerating the cells of a hyperplane arrangement.

105

However, we have not yet explained how to enumerate all possible cells of an arrangement. We denote the set of all
cells of H as Scell (H). When the arrangement H is clear from the context, we denote it as Scell directly. From Lemma

4, we know that the number of possible cells for an arrangement H is given by |Scell (H)| = CD (H) =
∑D

d=0

(
N
d

)
,

which is polynomial large with fixed D. Therefore, if we develop an efficient algorithm for enumerating the cells
of an arrangement, we would also have a polynomial-time algorithm for solving all the aforementioned problems
related to cell enumeration.

In this section, we provide a comprehensive review of methods for enumerating the cells of a hyperplane ar-
rangement. Based on the combinatorial properties of different cell enumeration algorithms, we classify them into
two major categories: linear programming-based (LP-based) generation and hyperplane-based (H-based) generation.
Each class of algorithms has its own advantages and limitations when solving intractable combinatorial optimiza-
tion problems, making it difficult to fully replace one with the other. We will elaborate on these differences in the
following discussion.

II.3.3.1 Linear programming-based method for cell enumeration

Given an arbitrary simple arrangement H, the objective of a cell enumeration algorithm is to generate all possible
cells Scell (H) of H.

Consider an central arrangement H = {hn : n ∈ N} defined by hyperplanes hn =
{
x ∈ RD : wT

nx = 0
}

in RD.
Each cell can be represented by a N -tuple {+,−}N , where each + or − sign indicate whether a point lies on
the positive or negative side of the hyperplane hn, ∀n ∈ N , one way to enumerating cells of an arrangement H
is by generating the possible sign vectors that H can represents. Note, the sign vectors is equivalent to binary
assignments, and there are 2Npossible length N binary assignments, but only CD (H) =

∑D
d=0

(
N
d

)
possible

cells.
To determine whether a sign vector c = (c1, c2, . . . , cN) ∈ {+,−}N indeed represents a cell in H, one can solve

the following linear programming problem

min
x

0Tx

s.t. diag (c)T Wx ≥ 1,
(102)

where 0 is the all zero vector in RD+1, 1 is the all one vector in RN . The matrix diag(c) is an N×N diagonal matrix,
with the sign vector c placed along the diagonal. W is the normal vector matrix, where each row corresponds to a
normal vector wn ∈ RD+1, n ∈ N . We denote c+ and c− as the positive and negative index sets of the sign vector
c respectively. For instance, if c = {+,+,−,−}, then c+ = {1, 2} and c− = {3, 4}.

There exists a class of cell enumeration algorithms based on the cell feasibility predicate (102), which will be
the focus of this Subsection. we will refer as linear programming-based cell generation (LP-CG) algorithms, and
we denote the cell feasibility predicate as pcell in the following discussions.

Reverse search algorithm The reverse search algorithm is the first and perhaps also the most well-known
algorithm for enumerating the cells of an arrangement. It starts by setting an initial cell c∗, where all prediction
labels are +. This can be done by selecting an arbitrary cell of the arrangement and reversing the orientation of
any hyperplanes with negative labels by replacing their expression wT

nx = bn with −wT
nx = −bn. This operation

does not change the arrangement itself.
Starting from the initial cell c∗, adjacent cells are generated recursively by flipping the sign of one prediction

label c∗n from + to − for all index n. Since there are N indices in total, each flipping operation involves at most
O (N) operations. To determine if a flipped sign vector c′ is indeed a valid cell, one can solve the linear program
(102). The algorithm will return all possible cells after recursively executing the flipping operation up to N times.
This is because each assignment has only N possible ways to flip the prediction labels.

Two cells c′ and c adjacent if their sign vectors are different in exactly one component. Specifically, c′ is
considered the parent of c if they are different in index j, and c′j = −, cj = +. It is important to note that there
may be multiple distinct cells adjacent to the same cell. Consequently, the strategy described above may generate
the same cell multiple times.

A crucial step in avoiding the generation of duplicate cells is to design a unique child predicate q, such that
each cell c′ has exactly one associated child c. In other words, q (c′, c) = True, if and only if c is the unique child of
its parent c′ and return q (c′′, c) = False for all other parents c′′ of c. We shall call c the unique child of c′. The
definition of q is not unique, the detailed definition of q can refer to Ferrez et al. [2005].

106

++++

+++-
-+++

+-+--+-+

-++-

+--+

++-+

--+-

+-++

-+--

Figure II.3.4: A hyperplane arrangement (left panel) consists of four hyperplanes, with black arrows indicating their
directions. The positive and negative labels represent the underlying sign vector of each cell. The right panel illustrates
the generation process of the most well-known cell enumeration algorithm—the reverse search algorithm. Different
arrow colors represent the recursive stages of this algorithm: red arrows indicate cells generated in the first recursive
step, blue in the second, and green in the third.

Indeed, this generation process can be described as the following sequential decision process

genrev (0) = adjcells (c∗)
genrev (N) = gen (N − 1) ∪ filterq (mapadjcells (gen (N − 1))) ,

(103)

where mapadjcells (cs) maps the adjcells function to each cell c in cs, and adjcells (c) generate all parent cells of c,
which is defined as

adjcells (c) =
[
flipn (c) |∀n ∈ c+, if pcell (flipn (c)) = True

]
, (104)

where pcell is the cell feasibility test defined in (102), and flipn (c) function flip the nth index of sign vector c. The
filterq function here is symbolic, when we generate a list of parent cells adjcells (c) from its child c, we need to
filter out all c′ in adjcells (c) for which c is not its unique child, i.e., q (c′, c) = False.

The original characterization of the reverse search algorithm given by [Avis and Fukuda, 1996] is usually executed
in a depth-first way, which can be described as the algorithmic process in Algorithm 1, the possible cells of an
arrangement can be obtained by running RevSearch (H, c∗). Let LP (n, d) denote the time to solve a linear program
with n inequalities in d variables. The time complexity of this algorithm is O (N × LP (N,D)× CD (H)) because
in the worst case, we need to run O (N) times linear program to detect the adjacent cells of each cell. When H is

a central arrangement, the number of cells of H is CD (H) =
∑D

d=0

(
N
d

)
.

The generation process of the reverse search algorithm is depicted in the right-panel of Fig. II.3.4.

Incremental sign construction algorithm In our previous analysis for solving the 0-1 loss linear classification
problem [Xi and Little, 2023], we developed a generic cell enumeration generator based on the binary assignment
generator introduced in Section II.2.3. We refer to this as the incremental sign construction algorithm, due to its
inherent nature of constructing sign vectors incrementally. Rada and Cerny [2018] independently discovered the
depth-first search version of this algorithm.

The idea behind this cell enumerator is based on the fact that the cell feasibility test is segment-closed with
respect to the binary assignment generator. Recall that a predicate p is segment-closed if p (x ∪ y) = p (x) ∧ p (y).
This property holds for this problem because if a partial sign vector s that is not a cell in the partial arrangement
H′ (i.e., H′ is obtained by deleting some hyperplanes from H). Then any cell c extended from s will not be a
feasible cell with respect to H. Dually, this means that if a partial binary assignment s is not linearly separable
with respect to the point set ϕ (H′), then any assignment c extended from s will not be linearly separable with
respect to ϕ (H).

Therefore, an efficient cell enumeration generator can be constructed by simply incorporating the cell feasibility
predicate pcell insides the basgn generator, which can be defined as

gencell (0) = [[]]

gencell (N) = filterpcell ([1] ◦ gencell (N − 1) ∪ [−1] ◦ gencell (N − 1)) ,
(105)

107

Algorithm 1 Abstraction of the reverse search algorithm
1. Algorithm: RevSearch (H, c)

2. Inputs: An arbitrary cell c ∈ {1,−1}N , and an arrangement H = {hn : n ∈ N} defined by hyperplanes
hn =

{
x ∈ RD : wT

nx = bn
}

in RD.

3. begin

4. Scell = {c}

5. cs = adjcells (c)

6. for c′ ∈ cs do

7. if q (c, c′) = True then

8. Scell = Scell ∪ {c′}

9. RevSearch (c′)

10. end

11. end

12. end

13. Outputs: Scell

where ◦ is the cross-join operator. In the nth recursive step of program (105), there are at most Cover (n,D + 1) =

2
∑D

d=0

(
n− 1
d

)
cells, which differs from the number of cells in the reverse search algorithm, as this generator also

accounts for the dual cells. Thus program (105) will have a complexity of O
(∑N

n=0 (LP (n,D)× Cover (n,D + 1))
)

in order to enumerate all possible cells of an central arrangement H in RD.
In the actual implementation of (105), the number of linear programs that need to be run can be reduced by

half by storing an interior point for each cell during recursive generation. The underlying logic is as follows: during
recursion, whenever a new hyperplane Hn is added, the existing cell c is related to Hn in two ways:

1. The whole connected component of c belongs to H+
n or H−

n .

2. The hyperplane Hn subdivided the connected component of c into two new components, thus forming two
new cells.

Therefore, if an interior point xc ∈ RD of cell c ∈ {1,−1}n−1 belong to H+
n or H−

n then there must exists a new
cell c′ = (1, c) ∈ {1,−1}n or c′ = (−1, c) ∈ {1,−1}n after introducing the new hyperplane Hn. Once we determine
the sign vector of c′, assume c′ = (1, c). The two cases described above can be distinguished by checking if the sign
vector (−1, c) is a cell by running the cell feasibility predicate (102). Thus, only half of the sign vectors need to run
the linear program (102), as the cells represented by interior points xc do not require the feasibility test. Therefore,
the actual number of linear programs that need to be run in the nth recursive step of the program (105) is

Cover (n,D + 1)− Cover (n− 1, D + 1) = 2

D∑
d=0

(
n− 1
d

)
− 2

D∑
d=0

(
n− 2
d

)
= Cover (n− 1, D) . (106)

Thus the actual complexity of the algorithm will be

O

(
N∑

n=0

(LP (n,D)× Cover (n− 1, D))

)
= O

(
N∑

n=0

(
LP (n,D)× nD−1

))
. (107)

It is well known that linear programming algorithms, such as the interior point method, can terminate after
a finite number of iterations, depending on the desired solution precision [Little, 2019]. A linear programming

108

Algorithm 2 Obvious cell enumeration algorithm
1. Algorithm: CellEnm (H)

2. Inputs: An arrangement H = {hn : n ∈ N} defined by hyperplanes hn =
{
x ∈ RD : wT

nx = bn
}

in RD.

3. begin

4. Scell = ∅

5. Generate all possible K-combinations of hyperplanes, and stored in the set Svert.

6. for v ∈ Svert do

7. cs = adjcells (v)

8. Scell = Scell ∪ cs

9. end

10. end

11. Outputs: Scell

algorithm with worst-case complexity of O
(
N3
)

[Vaidya, 1989], leads to the cell enumerator’s complexity (107),
being upper-bounded by O

(
ND+3

)
.

Compared with the reverse search algorithm (103), the incremental sign construction algorithm (105) solves more
but smaller linear programming problems. In the previous analysis by Rada and Cerny [2018], the incremental sign
construction algorithm (105) appears more efficient, but it is difficult to analyze this precisely based on different
implementations.

II.3.3.2 Hyperplane-based method for cell enumeration

The term “hyperplane-based” method refers to approaches designed to explicitly construct hyperplanes. Unlike
the LP-based method discussed earlier, which characterizes hyperplanes by enumerating all possible sign vectors
of an arrangement. In RD, a hyperplane is uniquely defined by D points, hyperplane-based methods represent
a hyperplane by identifying the data points that lie on it, which provides us with a new perspective to look at
hyperplanes and eventually results a new class of algorithms that have a different combinatorial structure.

Vertex enumeration and obvious cell enumeration algorithm Consider a non-central and simple ar-
rangement H, consists of N hyperplane in RD. The obvious strategy for enumerating cells of an arrangement is
well-known in its dual form in machine learning studies [Murthy et al., 1994, Dunn, 2018]. It states that, given a

set of data points D of size N in RD, the possible way to partition D by a linear hyperplane is 2D
(
N
D

)
. This is

obtained from the intuition that every D points can determine a hyperplane, and for each hyperplane, there are 2D

distinguish ways assign different labels to D data points that lies on the hyperplane. As depicted in the left-panel
of Fig. II.3.3, in RD, each yellow hyperplane can be determined by arbitrary two data item, and we can shift them
infinitesimally to obtain 2D hyperplanes without affecting the prediction to other data points.

In the space of hyperplane arrangement, this corresponds to the arbitrary D hyperplane has a intersection points
(vertex). Each vertex in the dual space will adjacent to exactly 2D cells, because we assume data points are in
general position. By enumerating all possible vertices first and then enumerating the adjacent cells of each vertices,
we can enumerate all possible cells in time 2D

(
N
D

)
. This strategy can be described as the algorithmic process

in Algorithm 2. Note the adjacent cells of a vertex v ∈ {1, 0,−1}N can be obtained more efficiently compared with
obtaining the adjacent cells of a cell c ∈ {1,−1}. We can obtain the adjacent cells of v by simply replacing the 0
signs with arbitrary 1 or −1 signs.

However, as we can read from the Fig. II.3.3, there are many overlapped cells by using the obvious strategy
described above. For instance, according to Lemma 4, When N = 100 and D = 3 , the number of cells is

109

+++

++-
-++

-+-

+--

+-+

𝐸𝑡1
𝐻1

𝐸𝑡2

𝐻2 𝐻3

0+0

+00

00 -

Figure II.3.5: Intersection of axis-parallel hyperplanes Etd , 1 ≤ d ≤ 2 with an arrangement consists of three lines in
R2

∑3
d=0

(
100
d

)
= 166751, whereas the combinatorial complexity of the obvious strategy is 23

(
100
3

)
= 1293600,

the combinatorial complexity of this obvious strategy wasted almost
(
2D − 1

)(N
D

)
computations for enumerating

duplicates cells!
In the following, we will introduce a generic cell enumeration algorithm for enumerating the cells of a non-

central arrangement H, and each cell will be visited only once, thus the resulting algorithms will have a complexity
of
∑D

d=0

(
N
d

)
.

Efficient cell enumeration based on K-combination generator Consider a non-central and simple arrange-
ment H, consists of N hyperplane in RD. In this Section, we present a ingenious cell enumeration algorithm based
on enumerating the vertices of an arrangements. The algorithms constructed in this section follows an important
lemma in Gerstner and Holtz [2006].

Let the D hyperplanes Etd , 1 ≤ d ≤ D, be the axis-parallel hyperplanes defined by eTd x = td, where the dth
unit vector ed the vector with all components equal to zero except for the dth component which is equal to one. td
is chosen so large such that all vertices of the hyperplane arrangement H are below Etd , ∀1 ≤ d ≤ D. For instance,
in Fig. II.3.5, two axis-parallel hyperplane Et1 and Et2 in R2 indicated by dashed lines, such that all vertices
(black dots in Fig.) of H are below Etd , ∀1 ≤ d ≤ D. We have following lemma, which establish the one-to-one
correspondence between the cells of arrangement H with vertices of H and the intersection vertices of hyperplanes
in H with Etds.

Lemma 13. Given a simple arrangement H. Let the vertices set VH consist of the intersection points of any d
different hyperplanes Hn, n ∈ {N}, with the first D − d hyperplanes Etd , d = 1, . . . , D − d, where d = 0, . . . , D.
The vertices set VH is one-to-one corresponds to the cells of arrangement H. Each vertex uniquely determines a cell
by moving this vertex along the backwards direction of edges that intersect it. The backwards direction is defined
as the direction that decreases the value of the first D − d coordinates.

The correctness of this lemma can be proved through an inductive sweep hyperplane, we did not prove it here,
as it is beyond the scope of this thesis. The algorithmic process described in Gerstner and Holtz [2006] is shown
in Algorithm 3. It is evident that generating the vertex set VH (line 4) is well-suited to be accomplished using the
K-combinations generator kcombs designed in Section II.2.3.

The remaining evaluation steps (lines 6-10) can be considered special cases and thus can be easily incorporated
into the recursive generation steps of kcombs. However, since there is no publicly available code for the algorithm
from Gerstner and Holtz [2006], it remains unclear how to efficiently select sufficiently large td values. One way to
resolve this issue is to determine td after all vertices of an arrangement are enumerated. Then, td for all d ∈ D can
be determined by calculating the maximum coordinates with respect to all vertices.

II.3.3.3 Efficiency of cell enumeration methods in combinatorial optimization

In terms of enumerating cells, H-based methods are much more efficient than LP-based methods, because calculating
the inverse of a matrix, which takes O

(
D3
)

time in the worst-case, is much more efficient than calculating a linear

110

Algorithm 3 Efficient cell enumeration algorithm
1. Algorithm: ECellEnm (H)

2. Inputs: An arrangement H = {hn : n ∈ N} defined by hyperplanes hn =
{
x ∈ RD : wT

nx = bn
}

in RD.

3. begin

4. Scell = ∅

5. Compute all vertices set VH

6. for v ∈ VH do

7. let Hi denote the D hyperplanes intersecting v for i = 1, . . . , D

8. find a backward point xv on the edge through v which does not lies on any hyperplane Hi

9. compute the sign vector of xv, sv = signH (xv)

10. Scell = Scell ∪ sv

11. end

12. Outputs: Scell

Methods for cell
enumeration

Worst-case time
complexity

Best-case time
complexity

Worst-case
memory usage

Best-case
memory usage

LP-based Always worse Usually better Always worse Usually better
H-based Always better Usually worse Always better Usually worse

Table 1: Comparison between LP-based methods and H-based methods for cell enumeration in terms of worst/best
case time/space complexity.

111

program with N inequalities in D variables. We summarize the comparison between these two classes of methods
in Table 1 considered solely on their performance in cell enumeration task.

However, in the context of combinatorial optimization, these different cell enumeration methods each have unique
advantages that cannot be fully replaced by the others. This is because they characterize the combinatorics of each
cell differently. LP-based methods uniquely characterize each cell by the sign vector it represents. In contrast,
H-based methods characterize each cell by vertices (or dually, hyperplanes), which are uniquely determined by
the intersection of D hyperplanes (or dually, a D-combination of data points). Thus, H-based methods are more
memory efficient, since storing a sign vector requires O (N) space but a hyperplane requires only O (D) space.

Furthermore, for some COPs, such as the 0-1 linear classification problem, characterizing cells (or hyperplanes)
as sign vectors offers significantly better best-case complexity. This is because any partial sign vector that can be
proven to be non-optimal can be safely discarded without full extension. In contrast, H-based methods characterize
hyperplanes as D-combinations of data points. During recursion, d-combinations of data points for 0 ≤ d < D
are challenging to prove as non-optimal, as these combinations are often insufficient to construct a hyperplane.
Moreover, these d-combinations must be stored in order to construct complete D-combinations. Therefore, CO
algorithms based on H-based methods typically have better worst-case time complexity but worse best-case time
complexity in CO tasks.

II.3.4 Euclidean Voronoi diagram and K-means problem
II.3.4.1 K-means problem and Euclidean Voronoi partition

Clustering is the grouping of similar objects and clustering of a set is a partition of elements that is chosen to
minimize some measure of similarity, there are various kinds of measures of dissimilarity. The K-clustering problem
fix a set of centroids U = {µk : k ∈ K}, where K = {1, . . . ,K} in RD. We can take all centroids in RD together in
a DK-tuple, denote as −→µ = (µ1,µ2, . . . ,µK) ∈ RDK . Each centroid µk associated with a unique subset of data
points, these data points are the closest data points to this centroid than other centroids (in terms of distance),
this subset is called a cluster, denoted as Ck. Together, they forms a K-clusters set C = {C1, C2, . . . , CK}. Thus K
is then called the cluster labels.

The most commonly used dissimilarity measure is Euclidean distance. The K-clustering problem defined on
Euclidean distance is called the K-means problem, which can be defined over continuous variable −→µ as

−→µ ∗ = argmin
−→µ∈RDK

EK-means
(−→µ) = ∑

µk∈U

∑
xn∈Ck

d2 (xn,µk)
2

. (108)

The objective function
∑

k∈K
∑

xn∈Ck
d2 (xn,µk)

2 is convex in µk, if we fixed assignment s the optimal centroids
U which solve the (108) are uniquely determined, which means that we can find the map between a set of class
labels and a set of centroids analytically by

µk =
1

| Ck |
∑

xn∈Ck

xn, k ∈ K. (109)

Given the correspondence between class labels and centroids, we can define a combinatorial parameter s =
(α1, α2, . . . , αN) ∈ Skasgns = KN is the K-class assignment for the K-clustering problem, such that αn = k if
data item xn is assigned cluster k. Then the K-means problem can be reformulated as

s∗ = argmin
s∈Skasgns

EK-means (s) =
∑
k∈K

∑
n∈N

1 [sn = k] d2 (xn,µk)
2

, (110)

where function 1 [] returns 1 if the Boolean argument sn = k is true, and 0 if false.
Similarly, if we have a set of centroids U , the assignment with respect to data set D can be determined uniquely.

Indeed, a set of centroids U = {µk : k ∈ K} forms a Euclidean Voronoi diagram that partition the space into K
Voronoi regions. Given a data set D and a set of centroids set of centroids U = {µ1, µ2, . . . , µK}. Every set
of centroids U = {µ1, µ2, . . . , µK} have an associated Voronoi diagram V = {V1, V2, . . . , VK}, each centroid µk

partition the ambient space RD into regions defined by

Vk =
{
x ∈ RD | d2 (x− µk)

2 ≤ d2
(
x− µj

)2
, ∀k, j ∈ K ∧ k 6= j

}
, (111)

which naturally partition the data set D into K clusters C = {C1, C2, . . . , CK} defined by

Ck =
{
x ∈ D | d2 (x− µk)

2 ≤ d2
(
x− µj

)2
, ∀k, j ∈ K ∧ k 6= j

}
, (112)

112

the data items lies in region Vk assigned to the cluster Ck. We will call the clusters set C the Voronoi partition to
distinguish with the Voronoi diagram V = {V1, V2, . . . , VK}, the K-class assignment s associated with each Voronoi
partition C is then called Voronoi partition assignment.

II.3.4.2 The optimality of the K-means problem

To solve the K-means clustering problem, the most obvious strategy for solving this issue is to enumerate all possible
K-class assignments in the search space Skasgns. However, the number of possible K-class assignments for a size N
data set is KN . Every K-class assignment s in Skasgns will introduce a unique partition {C1, C2, . . . , CK}. However,
not all partitions are useful. In fact, it can be proved that only the Voronoi partition can be the global optimal
partition for the K-means problems [Tîrnăucă et al., 2018, Inaba et al., 1994, Hasegawa et al., 1993].

Lemma 14. The optimum partition for the K-clustering problem must be a Voronoi partition.

Proof. This theorem is easy to prove by showing that any non-Voronoi partitions is non-optimal. Assume we have an
assignment s that assign a data item xn to cluster Ck, and xn has distance relation d2 (xn − µk)

2
> d2

(
xn − µj

)2.
If a new assignment s′ assign xn to cluster Cj and keep other data items fixed, the squared error will decrease
because d2 (xn − µk)

2
> d2

(
xn − µj

)2. Thus assignment s′ is better than assignment s, and s is non-optimal.

Similar results can be extended to Bregman Voronoi diagrams, where distance functions are generalized to
Bregman divergences.

Although the number of possible K-class assignments is O
(
KN

)
, the number of Voronoi partitions is only

polynomial large when D and K are fixed. Inaba et al. [1994] have shown that the number of Voronoi partitions
is at most O

(
NDK

)
. This fact comes from the fact that the Voronoi diagram can be represented by a hyperplane

arrangement consisting of NK (K − 1) /2 hyperplanes in DK-dimensional space, and the number of cells for this
arrangement is at most O

(
NDK

)
.

This result may look strange in the first place, as the Voronoi diagrams are defined by quadratic polynomials.
The reason behind this is that we only care about the sign value of each quadratic term in (112), instead of the
actual value of d2 (x− µk)

2. In the following discussion, we will explain the reasons behind it, and the result will
naturally yield algorithms for solving the K-means problem.

II.3.4.3 The sign vector of the Euclidean Voronoi diagram

We can reformulate the expression d2 (xn − µk)
2 ≤ d2

(
xn − µj

)2 to the equivalent form

µ2
k − µ2

j − 2xT
n

(
µk − µj

)
≤ 0, (113)

if the data items xnfixed, this formula becomes a polynomial with variable µk, µj .
WE can define d2 (xn − µk)

2 − d2
(
xn − µj

)2 as a polynomial parameterized by xnand with variable µk, µj

Pxn,k,j =

D∑
d=1

µ2
kd −

D∑
d=1

µ2
jd − 2

D∑
d=1

xnd (µkd − µjd) , (114)

where Pxn,k,j is a polynomial in R
[−→µ], and −→µ = (µ1,µ2, . . . ,µK) ∈ RDK is the K-tuples of K centroids in RD.

For each pair of centroids and a data items we can define a polynomial (114). Therefore, the total number of

polynomials equations for a size N data set with K centroids in RD is M = N

(
K
2

)
= NK (K − 1) /2. These

polynomials form a arrangement SP = {Sxn,k,j : ∀n ∈ N , ∀k, j ∈ K ∧ j 6= k}, where
Sxn,k,j =

{
xn ∈ RD :

∑D
d=1 µ

2
kd −

∑D
d=1 µ

2
jd − 2

∑D
d=1 xnd (µkd − µjd)

}
. We call SP as the Voronoi arrangement

defined by data set D.

Lemma 15. Assume there are no data lies on the boundary of each partition, a K-class partition {C1, C2, . . . , CK}
is a Voronoi partition if and only if

Ck = {xn ∈ D : Pxn,k,j < 0 ∧ Pxn,j,k > 0} , ∀k, j ∈ K ∧ j 6= k. (115)

In fact, the actual value of Pxn,k,j is not interested to us, since we only want to know if xn is closer to µk or
µj .In fact, this information can be obtained by knowing the sign vector of −→µ ∈ RDK to the polynomial system
P = {Pxn,k,j | ∀n ∈ N , ∀k, j ∈ K ∧ j 6= k}.

113

+++ +--

++-
+++

𝑥1 𝑥2 𝑥3

𝜇1𝜇2 𝜇′2 𝜇′1

𝝁′ = (𝜇′1, 𝜇′2)

𝝁 = (𝜇1, 𝜇2)

𝜇1
2 − 𝜇1

2 − 2𝑥3(𝜇1 − 𝜇2) = 0

𝜇1
2 − 𝜇1

2 − 2𝑥2(𝜇1 − 𝜇2) = 0

𝜇1
2 − 𝜇1

2 − 2𝑥1(𝜇1 − 𝜇2) = 0

𝜇1

𝜇2

Figure II.3.6: The hypersurface arrangement introduced by the Voronoi arrangement of three data points x1, x2 and
x3 in R. The centroids vector −→µ hat lies within a given cell produces the same partition of data points. For example,
two centroid vectors (represented by the red and blue points) lying in different cells will result in different partitions
of the data. The centroid vector represented by the red point classifies all x1, x2, x3 to centroid µ1, while the centroid
vector represented by the blue point classifies x1 and x2 to µ′

2, and x3 to µ′
1.

Thus we can reformulate (115) using the sign vector of the polynomial system P as stated in the following
lemma.

Lemma 16. Let signSP

(−→µ) be the sign vector of −→µ with respect to surface arrangement SP defined by polynomial
system P = {Pxn,k,j | ∀n ∈ N , ∀k, j ∈ K ∧ j 6= k}, and there are no data lies on the boundary of each partition, a
cluster set {C1, C2, . . . , CK} is a Voronoi partition if and only if

Ck =
{
xn ∈ D : δxn,k,j

(−→µ) = −1 ∧ δxn,j,k

(−→µ) = 1
}
, ∀k ∈ K. (116)

Geometrically, δxn,k,j

(−→µ k,j

)
= −1 means d2 (xn − µk)

2 ≤ d2 (xn − µj)
2, i.e., xn is closer to µk than µj .

Conversely given a centroids vector −→µ , the Voronoi partition {C1, C2, . . . , CK} associated to −→µ is defined as

Ck =
{
xn ∈ D : δxn,k,j

(−→µ) = −1 ∧ δxn,j,k

(−→µ) = 1
}
, ∀k ∈ K. (117)

The K-clustering problems are now becomes the problem that finding an optimal sign vector δP
(−→µ) for the

arrangement SP = {Sxn,k,j : ∀n ∈ N , ∀k, j ∈ K ∧ j 6= k} determined by polynomial system P. The optimal sign
vector δP

(−→µ) can be obtained by enumerating all possible cells of the arrangement SP .
According to Lemma 8, the number of cells in arrangement SP is at most O

(
NDK

)
. However, since SP is not

a simple arrangement, the actual number of cells in arrangement SP is significantly smaller than the worst-case
bound O

(
NDK

)
. For instance, assume we have three points x1 = 1, x2 = 2, and x3 = 3 in R, and we have K = 2

clusters, the arrangement SP for polynomial system defined by (114) are three 2D conic sections that shown in Fig.
II.3.6. This is clearly not a simple arrangement, as the three conic sections defined by three different data items
have common intersections.

Similar to the linear case, the space of RDK is partitioned into different connected components by arrangement
SP . The points in each connected region represent equivalence classes of centroids, such that centroids within the
same region will have identical sign vectors. For instance, consider data in R and the number of clusters is two,
thus the centroids vector −→µ lies in R2. In Fig. II.3.6, we can see that the space of R2 is partitioned into eight
disjoint regions. For arbitrary points in region with (−,−,−) sign (the red point in the Fig.), they correspond to
centroids with property that d2 (µ1, xi) < d2 (µ2, xi), for i ∈ {1, 2, 3}. In other words, µ1 is closer to all three data
points than µ2. On the other hand, the blue point in region (+,+,−) represents that centroids µ′

1 is closer to x1,
x2 and µ′

2 is closer to x3.
There exist various studies on how to enumerate all cells for an arbitrary polynomial surface arrangement [Basu

et al., 1995, Caviness and Johnson, 2012]. However, enumerating the cells of a hypersurface arrangement is much

114

more harder than enumerating the cells of a hyperplane arrangement. Fortunately, because of the special geometry
of the K-clustering problem, we can enumerate the cells of the arrangement SP in a much simpler way.

In the next section, we will show that the hypersurface arrangement SP defined by quadratic polynomials (114)
can be transformed into a hyperplane arrangement.

II.3.4.4 Variable replacement and optimal K-means clustering

Our discussion here is similar to the discussion of [Tîrnăucă et al., 2018], it shows that the system of polynomials
in (114) can be solved by a system of linear equations by applying a change of variables.

Consider polynomials defined in (114) with KD variables, an important observation is that Pxn,k,j = Pxn,1,j −
Pxn,1,k, ∀2 ≤ k < j ≤ K. If we replace the variable in (114) through equation

∑D
d=1 µ

2
kd = Yi, ∀i ∈ K and

µ1d − µkd = Z(k−1)d, ∀k ∈ {2, . . . ,K} and d ∈ {1, . . . , D}. The polynomial Pxn,k,j can be reformulated as

P ′
xn,1,k = Y1 − Yk − 2

D∑
d=1

xndZ(k−1)d, ∀k ∈ {2, . . . ,K}

P ′
xn,k,j = P ′

xn,1,j − P ′
xn,1,k, ∀2 ≤ k < j ≤ K,

(118)

which forms a new linear system P ′ =
{
P ′
xn,j,k

: ∀n ∈ N , k 6= j
}

in R
[
Y1 . . . YK , Z1, . . . , Z(K−1)D

]
= R

[−→µ ′], where
−→µ ′ ∈ RK+(K−1)D is the modified variable from −→µ through above variable replacement. We denote the hyperplane
arrangement defined by polynomial system P ′ as HP′ .

After changing the variables, the new system P ′
xn,1,k

becomes a linear system. Moreover, the number of variables
in the new polynomial system P ′ involves only K + D (K − 1) variables whereas the old system involves KD
variables. Moreover, polynomials P ′

xn,k,j
, 2 ≤ k < j ≤ K are all determined by polynomials P ′

xn,1,k
, k ∈ {2, . . . ,K}.

Thus all polynomials P ′
xn,k,j

, 2 ≤ k < j ≤ K can be ignored when we enumerate the cells of the arrangement HP′ .
Therefore, although there are NK (K − 1) /2 polynomial equations in system P ′, the number of linearly independent
equations are (K − 1)N . In contrast, the old system has NK (K − 1) /2 independent equations.
Example 8. Given a dataset D of size N and K = 3. The coefficients for linear system (118) can be represented
by following coefficient.

1 −1 −2x11 −2x12
...

...
...

...
1 −1 −2xN1 −2xN2

1 −1 −2x11 −2x12
...

...
...

...
1 −1 −2xN1 −2xN2

1 −1 −2x12 −2x12
...

...
...

...
1 −1 −2xN2 −2xN2

, ∀n ∈ N . (119)

By applying the variable replacement above, it is easy to show the following lemma is true.
Lemma 17. Let PI = {Pi | i ∈ I} be a polynomial sub-system of P = {Pxn,k,j | ∀n ∈ N , ∀k, j ∈ K ∧ j 6= k}, where
Pxn,k,j is defined by (114) in R

[−→µ]. Given a sign vector α =
{
α1, . . . , α|I|

}
∈ {−1, 1}|I|, if

signSPI

(−→µ) = αi, ∀i ∈ I, (120)

has a solution, then
signHPI′

(−→µ ′) = αi, ∀i ∈ I, (121)

also has.
A consequence of Lemma 17 is that enumerating the cells for arrangement SP defined by polynomial

P = {Pxn,k,j | ∀n ∈ N , ∀k, j ∈ K ∧ j 6= k} is equivalent to enumerating cells for hyperplane arrangement HP′ de-
fined by linear system P ′ =

{
P ′
xn,j,k

: ∀n ∈ N , k 6= j
}

.
Follows from the result of [Tîrnăucă et al., 2018], we have following theorem for enumerating cells in arrangement

HP′ .

115

Theorem 12. In order to enumerate all possible sign vectors (cells) of arrangement P ′, can be enumerated by solving
polynomial equations P ′

j

(−→µ) = αj , j ∈ J , where α =
(
α1, . . . , α|J |

)
represents all possible binary assignments in

{1,−1}|J | , and J is a subset of I such that |J | ≤ K + (K − 1)D.

II.3.4.5 Duality and 2-means problem

Indeed, Thm. 12 is similar to the obvious hyperplane-based method (114) for enumerating the cells of an arrange-
ment. As a result, this approach is much less efficient than the ideal algorithm that enumerates each cell only once.
However, since the subspace defined by polynomials in P ′ are not even hyperplanes, the algorithms introduced in
(II.3.3.1) cannot be directly applied to solve this problem. Developing a more efficient cell enumeration method
tailored to this specific problem could be a promising direction for future research.

Nevertheless, intuitively, the 2-means clustering problem in its simplest form closely resembles a classification
problem. In the 2-means problem, the partition of the data is determined by a hyperplane, due to the linear
separation property inherent in all Bregman divergences [Banerjee et al., 2005]. In this section, we will validate
this intuition by showing that for the 2-means clustering problem, the arrangement introduced by the polynomials
P ′ is indeed a hyperplane arrangement. Consequently, the 2-means problem can be solved exactly using any cell
enumeration algorithm

Consider the case where K = 2, the new polynomial system P ′ introduces a linear system with following
coefficient matrix

1 −1 −2x11 −2x12 −2x1D
1 −1 −2x21 −2x22 −2x2D

... · · ·
...

1 −1 −2xn1 −2xn2 −2xnD
...

...
1 −1 −2xN1 −2xN2 −2xND

. (122)

At first glance, the affine flats represented by the matrix (122) form an arrangement in RD+2. However, the
linear system (hyperplane arrangement) in (122) has a very special form, it is consists of a set of hyperplanes
with normal vector wn = (1,−1,−2x1, . . . ,−2xD) , ∀n ∈ N , the first two coordinates are fixed. Applying
the inverse of the dual transformation ϕ−1 to the hyperplane system (122), we obtain a set of data points{
ϕ−1 (wn) = (1,−1,−2x1, . . . ,−2xD) ∈ RD+2 | ∀n ∈ N

}
. We define the data points of this form as following.

Definition 31. Double-homogeneous coordinate. The double-homogeneous coordinate for a data item xn =
(xn1, xn2, . . . , xnD) ∈ RD is defined as

¯̄xn = (c1, c2, xn1, xn2, . . . , xnD) ∈ RD+2, (123)

where c1, c2 are some constant.

In the case of data set
{
ϕ−1 (wn) = (1,−1,−2xn) ∈ RD+2 | ∀n ∈ N

}
. We can imagine a set of dataset {−2xn : ∀n ∈ N}

been moved to the homogeneous coordinate twice. Geometrically, this means that we have two hyperplanes Y1 = 1
and Y2 = −1 (subspace with dimension D + 2 − 1, remember that the dimension for the linear system (122) is
D+ 2), their intersection forms a D+ 2− 2 = D dimensional subspace which is equivalent to the dimension of our
the data.

Therefore, the 2-means problem with respect to the dataset D can be solved exactly by enumerating the cells
of the arrangement introduced by (122). This is equivalent to finding the optimal dichotomies for the dataset
{−2xn : ∀n ∈ N}. This confirms the intuition that the 2-means problem is equivalent to a linear classification
problem and can thus be solved exactly by enumerating O

(
ND

)
cells.

II.3.5 Chapter discussion
In this chapter, we present a comprehensive analysis of the geometric and combinatorial properties of Voronoi
diagrams and hyperplanes. One of the main contributions includes the development of novel algorithms for enu-
merating the cells of hyperplane arrangements, along with a reformulation of the reverse search algorithm, which
is typically expressed in a depth-first way in literature.

116

These algorithms hold potential interest for both combinatorial geometers and optimization researchers. For
geometers, the construction of efficient cell enumeration algorithms is one of the most fundamental problems in
combinatorial geometry studies, and existing algorithms are often difficult to parallelize.

Although Avis and Fukuda [1996] provide a brief explanation of how to parallelize the reverse search algorithm,
their depth-first approach, as discussed in Section II.2.7, often requires extensive communication between proces-
sors due to backtracking. In contrast, our cell enumeration algorithms, including the reformulated reverse search
algorithm, are much easier to parallelize and can be efficiently implemented on both CPUs and GPUs.

This is also of interest to optimization researchers because many intractable COPs [Ferrez et al., 2005, Xi and
Little, 2023, Bertsimas et al., 2020] can be solved in polynomial time by applying these cell enumeration algorithms.

Additionally, we explore the geometric foundations of many essential machine learning models, such as K-means
clustering and linear (or polynomial) classification models. These insights almost already give us a polynomial time
algorithm for solving these intractable machine learning problems, given the generator that we have introduced in
Section II.1.2 and Section II.2.3. In Part III, we will demonstrate how the geometric insights gained here can be
applied to solve various fundamental machine learning problems.

117

Part III
Specialized theory: Designing tractable
algorithms for fundamental problems in machine
learning
This Part explains the Specialized Theory, which examines the combinatorial essence of several fundamental
problems in machine learning: classification problems with linear or polynomial hypersurface decision boundaries,
K-clustering (including K-means and K-medoids), the empirical risk minimization (ERM) problem for feedforward
neural networks with ReLU activation functions (ReLU network), and decision tree problems with axis-parallel,
hyperplane, and hypersurface decision boundaries.

Although all the problems examined in this part have been proven to be NP-hard, we will show that all these
problems can be solved in polynomial time when certain parameters, such as the dimensionality or the number of
hyperplanes of the model, are fixed. Additionally, by analyzing their combinatorial essence, we demonstrate that
algorithms for solving these problems can be easily derived using the catamorphism generators introduced in earlier
sections.

Each chapter within this part is dedicated to a specific problem. The discussion in each chapter is organized
into four sections: a review of related studies, a problem definition, the combinatorial essence of the problem (which
will be further split up to discuss the combinatorial complexity of this problem and the design of the combinatorial
generator), and a further discussion. The further discussion addresses acceleration techniques tailored to each
problem, which can lead to algorithms with performance that is provably better than their worst-case complexity,
potentially achieving near-linear time efficiency in the best case. Additionally, the advantages, drawbacks, and
possible extensions to related problems are examined, providing a comprehensive understanding of each problem’s
challenges and opportunities.

By analyzing the combinatorial essence of these commonly used machine learning problems, we will demonstrate
the great potential of using our framework to design efficient and exact algorithms tailored to the most pressing
challenges in machine learning.

118

III.1 Terminology
In this chapter, we provide a brief summary of the Terminology that will be used in the discussion. Some of these
terms may have been explained in previous sections, and we re-summarize them here to assist the audience in
recapping.

Given a data set D consists of N data points (or data items) xn, ∀n ∈ {1, . . . , N} = N , where the data points
xn ∈ RD and D is the dimension of the feature space. We can use a matrix to store our data set, by putting the
transpose of each column vector xn in the row of the matrix, we obtain a N ×D matrix X. In the K-clustering
problem, we do not know the label for each data point xn, since the K-clustering problem is an unsupervised
learning problem. In the classification problem, each data point has a unique true label tn ∈ {−1, 1}, ∀n ∈ N . All
true labels in this data set are stored in a vector t = {t1, t2, ..., tN}T in {−1, 1}N and the data set is represented by
Dt.

In machine learning, the central task is to “learn” from the data, and refine some useful information (or param-
eters). Then we can make efficient “queries” from our model, this is known as inference. In supervised learning
problems, each data item consists of features and a unique label, when we learn a model from our algorithm, the
predicted labels of this model is called an assignment. Similarly for the clustering learning problem, although there
are no labels for each data item, we implicitly assign a “ cluster label” to each data item, and this cluster label is
called an assignment either.

Recall that, in linear classification problem, a linear model predicts all data points on the positive side of the
decision boundary with a label of 1, and assigns a label of −1 to points on the negative side (with an implicit label
of 0 for points lying exactly on the decision boundary). We can store the prediction labels for all data items in a
sign vector (assignment) y = (y1, y2, . . . , yN) ∈ {1,−1}N .

Similarly, for the K-clustering problem, the continuous variables that we need to specify are called centroids.
We denote the set of centroids by U = {µK}, k ∈ {1, . . . ,K} = K, the centroids µk, ∀k ∈ K lies in the feature
space RD. Thus, the space of all possible centroids is isomorphic to RD×K . Each centroid µk is associated with
a unique subset of data points. These data points are the closest data points to this centroid than other centroids
(in terms of distance), this subset is called cluster Ck, K is then called the cluster labels. Therefore, we can assign
a unique label αn ∈ K for each data point xn depending on which cluster they lie. Together, they forms a N -tuple
s = (α1, α2, . . . , αN) ∈ KN .

119

III.2 Classification problem
Algorithms for solving the linear classification problem have a long history, dating back at least to 1936 with linear
discriminant analysis. The original objective of the linear classification problem is to find a hyperplane decision
boundary that minimizes the number of misclassified data points. In other words, we aim to solve the linear
classification problem with a 0-1 loss objective.

For linearly separable data, many algorithms can obtain the exact solution to the corresponding 0-1 loss clas-
sification problem efficiently, but for data which is not linearly separable, it has been shown that this problem, in
full generality, is NP-hard. Alternative approaches all involve approximations of some kind, including the use of
surrogates for the 0-1 loss (for example, the hinge or logistic loss) or approximate combinatorial search, none of
which can be guaranteed to solve the problem exactly. Finding efficient algorithms to obtain an exact i.e. globally
optimal solution for the 0-1 loss linear classification problem with fixed dimension, remains an open problem.

In this chapter, we provide a detailed analysis of the combinatorial essence of the 0-1 loss linear classification
problem by examining two representations of hyperplanes: One representation characterizes a hyperplane in RD

as D-combinations of data points, while the other characterizes them through the prediction labels (assignment)
of a hyperplane with respect to a set of data. Each representation offers unique advantages that cannot be fully
replaced by the other.

Moreover, we will discuss the generalization of our methods to address both the polynomial hypersurface clas-
sification problem and the linear classification problem beyond the 0-1 loss. This includes tackling problems with
intractable combinatorial objectives, such as the margin-loss linear classification problem. The exact margin-loss
linear classification algorithm allows for the use of adjustable hyperparameters, potentially leading to more robust
solutions for predictions.

III.2.1 Related studies
Classification algorithms have a long history. The first classification algorithms date back to the early 20th century,
perhaps most importantly logistic regression (LR) which is regarded as one of the most useful algorithms for the
linear classification problem. The logistic function first appeared in the early 19th century [Quetelet et al., 1826],
and was rediscovered a few more times throughout the late 19th century and early 20th century, yet Wilson and
Worcester were the first to use the logistic model in bioassay research [Wilson and Worcester, 1943], and Cox was
the first to construct the log-linear model for the linear classification problem [Cox, 1958, 1966]. In 1972, Nelder and
Wedderburn first proposed a generalization of the logistic model for linear-nonlinear classification. Support vector
machine (SVM) is probably the most famous algorithm for the linear classification problem [Cortes and Vapnik,
1995], it optimizes the regularized hinge loss to obtain a feasible decision hyperplane with maximal margin. Most
of these algorithms can be considered as optimizing over convex surrogate losses for the 0-1 loss function. Recent
studies have shown that optimizing surrogate losses, such as hinge loss, lacks robustness in handling outliers [Long
and Servedio, 2008, Liu and Wu, 2007]. The objectives of these surrogate losses, while leading to computationally
efficient algorithms, fail to be robust compared with exact algorithms.

Little work appears to have been devoted to exact algorithms for the 0-1 loss classification problem. Tang
et al. [2014] implemented a MIP approach to obtain the maximal margin boundary for the optimal 0-1 loss, and
Brooks [2011] optimized SVM with “ramp loss” and the hard-margin loss using a quadratic mixed-integer program
(QMIP), where the ramp loss is a continuous function mixed with the 0-1 loss. Problems involving optimizing the
integer coefficient linear classifier have also drawn some attention [Chevaleyre et al., 2013, Carrizosa et al., 2016],
again exact solutions have only been obtained using inefficient MIP. Scoring system research is related to linear
classification with integer coefficients, but many scoring systems are built using traditional heuristic/approximate
classification methods, and Ustun [2017]’s empirical results show that the loss is substantial if we optimize convex
surrogates. Therefore, Ustun and Rudin [2019] presented a cutting-plane algorithm to learn an optimal risk score,
or solve it by formulating it as a MIP problem[Ustun and Rudin, 2016].

Perhaps closest to our work, Nguyen and Sanner [2013] developed a branch-and-bound algorithm (BnB) for
solving (126). Nguyen and Sanner [2013] also constructed a polynomial-time combinatorial search algorithm which
is similar to our algorithm, but gave no proof of correctness. Hence, previous work on this problem of solving (126) is
either computationally intractable, i.e. worse case exponential run-time complexity, or uses inefficient, off-the-shelf
MIP solvers, or is not provably correct [Nguyen and Sanner, 2013].

Previously, we designed and implemented in Python, three other novel, algorithms (E01-ICG, E01-ICG-purge
and E01-CE) for 0-1 loss linear classification problem [Xi and Little, 2023], and another algorithm called “E01-ICE”
[He and Little, 2023].

120

Although our previous discussions did not include correctness proofs and formal algorithm derivations for the
E01-ICG and the E01-ICG-purge algorithm, we conducted small-scale experiments to compare the wall-clock run-
time of these three algorithms against an earlier BnB algorithm A detailed discussion on the correctness of these
three algorithms will be presented in the discussion here.

III.2.2 Problem specification
The 0-1 loss linear classification problem has a long history in machine learning. The definition of this problem is very
simple, given data set D and its associated binary label vector t = (t1, . . . , tN)

T , we need to find a linear hyperplane
that minimizes the number of misclassification data points. In other words, we need to solve an optimization
problem that minimizes the following objective

E0-1 (w) =
∑
n∈N

1
[
sign

(
wT x̄n

)
6= tn

]
, (124)

which is a sum of 0-1 loss functions 1 [], each taking the value 1 if the Boolean argument is true, and 0 if false.
The function sign returns 1 is the argument is positive, and 0 if negative. The linear decision function wT x̄ with
parameters w ∈ RD+1 (x̄ =

(
xT , 1

)T is the data in homogeneous coordinates) is highly interpretable since it
represents a simple hyperplane boundary in feature space separating the two classes.

According to Vapnik [1999]’s generalization bound theorem, for the hyperplane classifier defined by w, with high
probability,

Etest ≤ E0-1 (w) +O

(√
log (N/ (D + 1))

N/ (D + 1)

)
, (125)

where Etest, E0-1 (w) are the test 0-1 loss and the empirical 0-1 loss of on training data set, respectively [Mohri
et al., 2018]. Equation (125) motivates finding the exact 0-1 loss on the training data, since, among all possible
linear hyperplane classifiers, with high probability, none has a better worst-case test 0-1 loss than the exact classifier.

Therefore, the 0-1 loss linear classification problem is to find an optimal w∗ that minimizes equation (124),
which is defined as

w∗ = argmin
w∈RD+1

E0-1 (w) . (126)

Although apparently simple, this is a surprisingly challenging optimization problem. Considered a continuous
optimization problem, the standard ML optimization technique, gradient descent, is not applicable (since the
gradients of E0-1 (w) with respect to w are zero everywhere they exist), and the problem is non-convex so there are
a potentially very large number of local minima in which gradient descent can become trapped. Heuristics exist, in
particular the classic perceptron training algorithm and variants which are only guaranteed to find one of these local
minima. By replacing the loss function 1 [] with more manageable surrogates such as the hinge loss Ehinge (w) =∑

n∈N max
(
0, 1− lnw

T x̄n

)
which is convex and differentiable nearly everywhere, the corresponding optimization is

a linear problem solvable by general-purpose algorithms such as interior-point primal-dual optimization. However,
this can only find a sub-optimal decision function corresponding to an upper bound on the globally optimal value
of the objective E0-1 (w).

An alternative is to recast the problem as a combinatorial one, in the following way. Every choice of parameters
w determines a particular classification prediction or binary assignment,
s =

(
sign

(
wTx1

)
, sign

(
wTx2

)
, . . . , sign

(
wTxN

))
∈ Sbasgn, where Sbasgn = {1,−1}N is the discrete search or

solution space, which consists of all possible 2N assignments/configurations. Every assignment entails a particular
total loss E0-1 (w), and we need to find the assignment that can obtain the optimal 0-1 loss Ê0-1. A naive way to
solve the 0-1 loss linear classification problem is to use the binary assignment SDP generator introduced in Section
II.2.3 to generate all possible binary assignments, and then select the best one, but this naive approach is inefficient
since there are 2Npossible binary assignments, and this problem is not a greedy problem, so we can not fuse the
selector sel inside the catamorphism generator.

Nevertheless, the number of data points N is finite and these points occupy zero volume of the real feature
space RD+1. This implies that there are a finite number of equivalence classes of decision boundaries which share
the same assignment. In fact, the geometry of the problem implies that not all binary assignments correspond to
one of these equivalence classes; the only ones which do are known as (linear) dichotomies, and while there are 2N

possible assignments, there are only O
(
ND

)
dichotomies for data set in D dimensions [Cover, 1965]. Thus, the

121

problem (126) can instead be treated as a combinatorial optimization problem of finding the best such dichotomies
and their implied assignments, from which an optimal parameter w∗ can be obtained.

III.2.3 The combinatorial essence of the linear classification problem
In Section II.3.3, we introduced two ways of characterizing the cells of an arrangement: a cell can be represented by
its sign vector with respect to an arrangement H, or by the intersection of D hyperplanes, i.e., vertices in set VH.
Similarly, due to point-line duality, these two representations are also valid for hyperplanes: a hyperplane can be
characterized by predicted labels of a decision hyperplane with respect to D, or by a D-combination of data items.

This section will discuss how to construct an efficient algorithm for solving the linear classification problem with
0-1 loss by analyzing the combinatorial essence of the two hyperplane representations mentioned above.

III.2.3.1 Hyperplane-based (H-based) algorithm

Through our exposition in Section II.3.2, we introduced the relationships between dichotomies and separating
hyperplanes for a given dataset D, along with their connections in the dual space in terms of the cells and vertices of
the dual arrangement HD. The key to solving a linear classification problem is to enumerate all possible dichotomies,
which is equivalent to enumerating the cells of the dual arrangement. We also presented two cell enumeration
algorithms based on vertex enumeration in Subsection II.3.3.2, both with a worst-case complexity of O

(
ND

)
.

According to the Linear Classification Theorem 10, it follows immediately that we can solve the 0-1 loss linear
classification problem in O

(
ND+1

)
given O (N) time for evaluating the 0-1 loss objective.

Nonetheless, applying the cell enumeration algorithms aims to solve linear classification problems in general,
i.e., linear classification problems with arbitrary objective functions. Regardless of the objective function chosen,
all linear classification problems can be solved exactly by exhaustively enumerating all possible dichotomies.

However, each objective function possesses unique geometric, algebraic, or even combinatorial properties, which
may enable more efficient methods for solving the linear classification problem if these properties are exploited. In
this section, we will demonstrate that this is indeed the case for the linear classification problem with a 0-1 loss
objective. We will show that the 0-1 loss linear classification problem can be solved more efficiently by enumerating
only the vertices of the dual arrangement HD, which correspond to the decision hyperplanes with D points lying
on them in the primal space.

The informal intuition behind this claim goes as follows. We can construct these solutions by selecting all D
out of the N data points, finding the hyperplane that passes exactly through these points, and computing the
corresponding assignments for the entire dataset along with their associated 0-1 loss. Each such hyperplane has
two possible orientations, leading to two corresponding assignments. However, the D points used to construct
these two hyperplanes, have undecided class assignments because the boundary goes exactly through them (so the
classification model evaluates to 0 for these points). There are 2D possible assignments of class labels to the D
points on the boundary, and each of these 2D assignments is a unique dichotomy. The best such dichotomy is the
one with the smallest 0-1 loss, and this is guaranteed by selecting the labels of the D points such that they agree
with their labels in the training data.

The following theorem proves the above claim.

Theorem 13. Consider a dataset D of N data points of dimension D in general position, along with their associated
labels. All globally optimal solutions to problem (126), are equivalent (in terms of 0-1 loss) to the optimal solutions
contained in the set of solutions of all positive and negatively-oriented linear classification decision hyperplanes
(vertices in the dual space) which go through D out of N data points in the dataset D.

Proof. First, we transform a dataset D to its dual arrangement. According to Lemma 7 and Lemma 8, each
dichotomy has a corresponding dual cell and if we evaluate the sign vectors for all possible cells in the dual
arrangement and their reverse signs, we can obtain the optimal solution for the 0-1 loss classification problem.
Assume the optimal cell is f , we need to prove that, one of the adjacent vertices for this cell is also the optimal
vertex. Then, finding an optimal vertex is equivalent to finding an optimal cell since the optimal cell is one of the
adjacent cells of this vertex. According to Lemma 10, any vertices that are non-conformal have corresponding 0-1
loss with respect to signH (f) which is strictly greater than D. Since f is optimal, any sign vectors with larger
sign difference (with respect to signH (f)) will have larger 0-1 loss value (with respect to true label t). Therefore,
vertices that are conformal to f will have smaller 0-1 loss value, thus we can evaluate all vertices (and the reverse
sign vector for these vertices) and choose the best one, which, according to Lemma 8, is equivalent to evaluating all
possible positive and negatively-oriented linear classification decision hyperplanes and choosing one linear decision
boundary with the smallest 0-1 loss value.

122

Therefore, the 0-1 loss linear classification problem can be solved exactly by running two separate combination
generators to enumerate the D-combinations of data points, and this can be done efficiently using any combinatorial
generator that we introduced in Section II.2.3 with complexity O

(
2×

(
N
d

)
×N ×D3

)
= O

(
ND+1

)
, where

O
(
D3
)

time is required for obtaining the hyperplanes with D points lies on it.
Moreover, in the next section, we will explain how the generators for enumerating positive and negative-oriented

hyperplanes can be fused into a single process, thereby reducing the computational time by half.

III.2.3.2 Linear programming-based (LP-based) algorithm

The linear programming-based method characterizes a hyperplane as a binary assignment (prediction labels for
data items in D), this is the same as characterizing it as the sign-vector of an arrangement HD = ϕ (D). In
Subsection II.3.3.1, where we introduced two cell enumeration algorithms: the reverse search algorithm (103) and
the incremental sign construction algorithm (105). Both algorithms can be applied to solve linear classification
problems in general. However, for solving the linear classification problem with the 0-1 loss objective, the cell
generator (105) is more suitable than the reverse search algorithm (103). We will explain why this is the case in
the discussion of this section.

Consider an data set D = {xn : n ∈ N} in RD with true label vector t = (t1, . . . , tN). Each data point can
either have a positive prediction label 1 or negative prediction label −1, the prediction labels for all data points
consists of a length N binary assignment y ∈ {1,−1}N . In our previous research [Xi and Little, 2023], we have
introduced the E01-ICG (short for, exact 0-1 incremental combinatorial generation) algorithm, which is the dual
version of the (105). The E01-ICG generates binary assignments by recursively appending new prediction labels
(positive and negative) to each partial assignment, and the 0-1 losses for these candidate configurations are updated
in each recursive step. During iteration, infeasible configurations (that is, ones which are not linearly separable
or have 0-1 loss which is larger than the given global upper bound) are filtered out. The feasibility of a binary
assignment y, for 1 ≤ n ≤ N is tested by the following linear program

min
w

0Tw

s.t. diag (y)T Xw ≥ 1.
(127)

Dually, the linear program (127) is essentially the same as the cell feasibility test (102).
Since the E01-ICG algorithm is essentially the same as the recursion (105), except for the additional recursive

update process for the 0-1 loss. Let’s consider how the 0-1 loss should be updated directly in the recursion (105).
In each recursion of (105), the two possible choices for a new class label yn+1 ∈ {1,−1}are appended to all partial
configurations generated so far. The objective values increase monotonically through the recursive update process
of the 0-1 loss because, for a partial binary assignment y′ ∈ {1,−1}n where 1 ≤ n < N , the 0-1 loss of y′ either
increases by one or remains the same after appending a new label yn+1 to it. Therefore, the objective values of
the configurations are updated in a monotonically increasing manner. It follows immediately that the dominance
relations that we introduced in Subsection II.2.6.3, such as global upper bound technique can be easily incorporated
into the recursion (105), allowing any partial assignments with a 0-1 loss worse than the global upper bound to be
discarded without further extension.

In contrast, the reverse search algorithm starts with a cell (a dichotomy in the primal space) where the sign
vector has all positive labels and then recursively flips positive signs + to negative −. It is clear that this process
does not have the property of being monotonically increasing with respect to the objective, as long as the true label
vector t is not all positive.

The monotonic increasing property is crucial in optimization problems, as it enables the incorporation of various
powerful dominance relations. In the worst case, assuming no acceleration techniques are applied, the E01-ICG
algorithm will have a complexity (107) in order to enumerate all possible dichotomies (cells in the dual space) in RD

(a data set in RD is isomorphic to a central arrangement in RD+1). Additionally, we need O (N × Cover (N,D))
operations to evaluate the 0-1 loss for each dichotomy. Thus, the E01-ICG algorithm has a complexity of

O

(
N∑

n=0

(LP (n,D)× Cover (n− 1, D)) +N × Cover (N,D + 1)

)
= O

(
LP (N,D)×ND +ND+1

)
. (128)

In the best case, where the upper bound is tightest (i.e., the data is linearly separable), the E01-ICG algorithm will
terminate in at most O

(∑N
n=0 LP (n,D)

)
time. Similarly, if a linear program can be solved in O

(
N3
)
time, then

the complexity of the assignment generation, as described in (128) is upper-bounded by O
(
ND+3

)
.

123

Algorithms Configurations need
to explores in the

worst-case

Required operations
to obtain the

representation of
hyperplane

The
effectiveness of
upper-bound

Recursively
generates

hyperplanes

Memory usage
for each

configuration

H-based
(
N
D

)
Matrix inversion

(efficient)
Limited

effectiveness
Yes O (D)

LP-based 2
∑D

d=0

(
N − 1
d

)
Linear programming
(much less efficient)

High
effectiveness

No O(N)

Table 2: Comparison between H-based methods and LP-based methods.

III.2.4 Further discussions
III.2.4.1 Difference between H-based algorithm and LP-based algorithm

As previously discussed, the H-based and LP-based algorithms represent the combinatorial aspects of the problem
in fundamentally different ways. Each algorithm introduces unique optimization features that cannot be replaced
by the other. In this Subsection, we will explore their differences in terms of the acceleration techniques applicable
to each, as well as their respective advantages and limitations.

Acceleration in H-based algorithm Due to the symmetry of the 0-1 loss, where a data item is assigned a
label of either 1 or −1, the 0-1 loss for the negative orientation of a hyperplane can be directly derived from the
positive orientation of the same hyperplane without calculating it explicitly. The following lemma formalizes this
relationship.

Theorem 14. Symmetry fusion theorem. Consider a dataset D of N data points of dimension D in general position,
along with their associated labels. Given hyperplane h which goes through D out of N data points in the dataset
D, separating the dataset into two disjoint sets D+ and D−. If the 0-1 loss for the positive orientation of this
hyperplane is l, then the 0-1 loss for the negative orientation of this hyperplane is N − l −D.

Proof. Assume there are m+ and m− data points are misclassified in D+ and D−, thus the 0-1 loss for h equals
l = m+ +m−. Denote the hyperplane h with negative orientation as h−. In the partition introduced by h−, all
correctly classified data by h will be misclassified in h−. Thus the 0-1 loss of h− is |D+| −m+ + |D−| −m−. Since
|D+|+ |D−| = N −D, we obtain the 0-1 loss for h− is N −D − l.

Acceleration in LP-based algorithm The two dominance relations, finite dominance relation (68) and global
upper bound (66), are readily applicable in this context. As demonstrated in Subsection II.2.6.3, utilizing these
dominance relations to eliminate non-optimal partial configurations maintains exactness, provided that the update
function is monotonic with respect to the objective. The monotonicity of the update function in the LP-based
algorithm was confirmed in the preceding discussion on the LP-based algorithm.

The informal intuition behind the correctness of these dominance relations is as follows: For the global up-
per bound dominance relation, any partial configuration with an objective worse than an approximate solution is
provably non-optimal and can therefore be safely discarded. In the case of the finite dominance relation, the opti-
mistic upper bound of a partial configuration is calculated by assuming that all unobserved extensions of prediction
labels are correct. If this optimistic upper bound is worse than either the current global upper bound or the pes-
simistic lower bound—obtained by assuming that all unobserved extensions of prediction labels are incorrect—the
configuration can be discarded without compromising optimality.

The use of global upper bound techniques has been empirically shown to be extremely powerful, as it can yield
nearly linear time complexity in the best-case.

Comparison between H-based algorithm and LP-based algorithm The key distinctions between the H-
based method and the LP-based method for the 0-1 loss linear classification problem are presented in Table 2.
In summary, the H-based algorithm offers unique advantages in two key aspects: its exceptional performance on
low-dimensional, small-scale problems and its incremental hyperplane generation process.

124

Firstly, H-based algorithms often outperform LP-based methods in low-dimensional, small-scale problems for
two main reasons: First, H-based algorithms can obtain the exact solution by exploring all possible

(
N
D

)
com-

binations, whereas LP-based methods must consider all possible dichotomies, which are provably larger in number
than the D-combinations of data items for data set D; Second, H-based algorithms generate hyperplanes through
matrix inversion, which has a worst-case time complexity of O

(
D3
)
. In contrast, LP-based methods require solving

a large number of linear programs, and solving a linear program with D variables typically takes more time than
matrix inversion when using classical LP solvers, such as the simplex method.

Secondly, the incremental hyperplane generation process is crucial for applications that require a balance between
accuracy and computational time. In contrast, LP-based algorithms are unable to achieve this balance because a
hyperplane represented by a partial assignment does not suffice for constructing a feasible solution. Additionally,
LP-based methods consume more memory to represent a hyperplane; characterizing a hyperplane through its
prediction labels requires O (N) space for each configuration, whereas representing a hyperplane by the data points
that lie on it requires only O (D) space.

Despite the disadvantages of LP-based algorithms, they possess unique advantages that cannot be easily replaced
by H-based algorithm� First, LP-based methods are significantly more effective for high-dimensional datasets com-
pared to H-based algorithms. High-dimensional data is often easier to classify than low-dimensional data, thus the
approximate solutions for high-dimensional problems tend to be highly accurate. Therefore, the use of a global upper
bound allows the algorithm to eliminate a large number of candidate solutions before extending them to completion.
In contrast, the global upper bound technique is only partially applicable to H-based algorithms. This limitation
arises from relaxing the fixed-length predicate (non-prefix-closed) into a max-length predicate (prefix-closed), which
restricts the generator’s ability to fully exploit the global upper bound technique.

Consequently, d-combinations, where 0 ≤ d < D are insufficient to construct a hyperplane, preventing the
evaluation of the objective for d-combinations. Moreover, these d-combinations must be stored until all possible
complete D-combinations are generated.

III.2.4.2 Non-linear (polynomial hypersurface) classification

Following our discussion about Veronese embedding in Subsection II.3.2.3, it is straightforward to generalize our
algorithms to the polynomial hypersurface classification problem, since a polynomial hypersurface is isomorphic to
a hyperplane in higher-dimensional embedding space RG, where G =

(
D +W
D

)
− 1. The Hypersurface Classi-

fication Theorem (II.3.2.3) states that an O
(
teval ×NG

)
time algorithm for solving the hypersurface classification

problem in general.
Similar to Thm. 13, the special combinatorial property of the 0-1 loss allows us to solve the problem more

efficiently, which is described in the following theorem.

Theorem 15. 0-1 loss hypersurface classification theorem. Consider a dataset D of N data points in general
position in RD, along with their associated labels. All globally optimal solutions to problem (126) with objective

E0-1 (w) =
∑
n∈N

1
[
sign

(
wT x̃n

)
6= tn

]
, (129)

where x̃n = ρW (x̄n) denotes the W -tuple Veronese embedding of the homogeneous data x̄n = (1, xn1, . . . , xnD),

and w ∈ RG where G =

(
D +W
D

)
− 1 is the number of monomials of a degree W -polynomial, are equivalent (in

terms of 0-1 loss) to the optimal solutions contained in the set of solutions of all positive and negatively-oriented
linear classification decision hyperplanes which go through G out of N data points in the dataset D.

However, the dimension of the space that the isomorphic hyperplane lies in will increase exponentially with
increasing D and W .

III.2.4.3 Margin loss linear classifier

The Linear Classification Theorem 10 states that an O
(
teval ×NG

)
time algorithm for solving the linear classifi-

cation problem can be constructed by enumerating all possible cells of the dual arrangement HD. This holds true
regardless of the loss function used. To illustrate this, we will briefly explain how the same algorithmic process of
exhaustively generating cells can be applied to the margin loss linear classification problem, thereby allowing us to
incorporate a hyperparameter to mitigate overfitting.

125

ℝ

𝑥

1

10

Φ1(𝑥)

𝟏 𝑥 ≤ 1

Figure III.2.1: The margin loss Φρ (x) (red), defined with respect to margin parameter ρ = 1 is upper bounded by the
shifted 0-1 loss 1 [x ≤ ρ] (blue dotted line), i.e., Φρ (x) ≤ 1 [x ≤ ρ], where x = ynh (n) in the classification problem.

The ρ-margin loss is a discrete variant of the hinge loss used in the well-known support vector machine (SVM)
algorithm, which is defined as follows.

Definition 32. For any ρ > 0, the the ρ-margin loss is the function Φ : R× R → R+ defined by

Φρ (x) = min
(
1,max

(
0, 1− x

ρ

))
=

1 if x < 0

1− x
ρ if 0 ≤ x ≤ ρ

0 if ρ < x.

(130)

As shown in Fig. III.2.1, the ρ-margin loss is upper bound by shifted 0-1 loss, i.e.,

Φρ (ynh (n)) ≤ 1 [ynh (n) ≤ ρ] , ∀n ∈ N , (131)

where h (n) = wTxn + bn and yn is the prediction label.
The value yn

(
wTxn + bn

)
, which is always positive yn

(
wTxn + bn

)
> 0 for all n ∈ N , is known as the functional

margin or confidence margins. The normalized functional margin yn(wTxn+bn)
|w| is known as the geometric margin,

i.e., the unit distance of xn to the decision boundary.
The objective function for the margin loss linear classification problem can be defined as the summation of the

margin loss of each data item
Emargin (w) =

∑
n∈N

Φρ

(
yn
(
wT x̄n

))
. (132)

From a result in learning theory [Mohri et al., 2018], given a data set D, such that ‖xn‖ ≤ r, ∀xn ∈ D, and let
H =

{
x 7→ wTx : ‖w‖ ≤ Λ

}
. Then, with probability at least 1− δ, the generalization (test) error Etest for binary

linear classification task with margin loss objective is upper bounded by

Etest ≤ Emargin (w) + 2

√
r2Λ2/ρ2

N
+

√
log 2

δ

2N
. (133)

Compared to the VC-dimension bound (125), which is defined in terms of 0-1 loss, the generalization bound based
on the ρ-margin loss offers two significant advantages. First, the generalization bound (133) provides a trade-off: a
larger value of ρ decreases the complexity term RN (H) (second term), but tends to increase the empirical margin-
loss Emargin (w) (first term) by requiring from a hypothesis h a higher confidence margin. Second, the generalization
bound (133) is remarkable, because it does not directly depend on the dimension of the feature space but only on
the margin. This contrasts with the VC-dimension lower bound, which is dimension-dependent.

The MIP specification for the margin loss linear classification problem is defined as

126

w∗ = argmin
w∈H

Emargin (w) (134)

Since the margin loss is discrete, the margin loss linear classification problem (134) cannot be directly optimized
using convex optimization methods.

From the definition of the margin loss objective (132), for data points that are correctly classified, we denote
y+ as the labels corresponding to correctly classified instances with index I+ and y− as the labels corresponding
to incorrectly classified instances with index I−. There are two cases for correctly classified data points: First, if
the data points lie within the confidence margin, i.e., the data points x have a distance 0 ≤ wT x̄ ≤ ρ, each of them
contributes a margin loss of 1 − yi(wT x̄)

ρ ; Second, if the data points lie outside the confidence margin, i.e., when
wT x̄ > ρ they result in zero margin loss. For data points in y−, which are misclassified, each contributes a margin
loss of one.

Therefore, given a fixed dichotomy (linearly-separable assignment) y = (y1, y2, . . . yN), to optimize the margin
loss, we need to solve the following problem

min
w

∑
i∈I+

ξi
ρ

+
∣∣I−∣∣

s.t. yi
(
wTxi + bi

)
≥ ρ− ξi, ∀i ∈ I+

yn
(
wTxn + bn

)
≥ 0, , ∀n ∈ N

0 ≤ ξi ≤ ρ,

(135)

where yn
(
wTxn + bn

)
≥ 0 is the linear feasibility constrains to make sure y is a dichotomy, and ξi, i ∈ I+ are the

slack variables, when ξi = 0, it represents xi is correctly classified and its confidence yi
(
wTxi + bi

)
is greater than

ρ. On the other hand, when 0 < ξi < ρ, xi is correctly classified but its confidence margin is smaller than ρ, it thus
has a margin loss ξi

ρ = 1− yi(wTxi+bi)
ρ . Finally, we have ξi = ρ for data points lying on the decision boundary.

Problem (135) is a linear programming problem that can be optimally solved using standard linear programming
solvers. However, this linear program (135) is based on functional margin, thus we can always scale the size of wi

and bi to make constraints yi
(
wTxi + bi

)
≥ ρ − ξi feasible. Therefore, we need to modify (135) to optimize the

geometric margin
min
w,b,ξi

1

2
‖w‖2 +

∑
i∈I+

ξi

s.t. yi
(
wTxi + bi

)
≥ ρ− ξi, ∀i ∈ I+

yn
(
wTxn + bn

)
≥ 0, , ∀n ∈ N

0 ≤ ξi ≤ ρ.

. (136)

Therefore, the margin loss linear classification problem can be solved exactly by enumerating all possible dichotomies
(cells of the dual arrangements) and the evaluation of the objective function takes teval = qp (N,D) time. Ac-
cording to the Linear Classification Theorem 10, we can solve the margin loss linear classification problem in
O
(
qp (N,D)ND

)
time.

III.3 Empirical risk minimization for ReLU network
In recent years, neural networks have emerged as a classical supervised learning technique, developed from the
perceptron learning algorithm for classification problems. This model has revolutionized nearly every scientific field
involving data analysis and has become one of the most widely used machine learning techniques today.

In this section, we address the problem of empirical risk minimization for 2-layer feedforward neural net-
work models (also known as multilayer perceptron (MLP) models) with rectified linear units (i.e., ReLU activation
functions). Optimizing even a 2-layer network with ReLU activation is known to be NP-hard. We analyze the
combinatorial essence of this problem and present a practical approach for solving it in polynomial time, assuming
that the dimension and the number of hidden nodes are fixed. Results from complexity theory demonstrate that
our approach achieves optimal efficiency in terms of worst-case complexity.

127

III.3.1 Related studies
It is well known that deep neural networks with ReLU activation functions are piecewise linear (PWL) classifiers
[Arora et al., 2016, Maragos et al., 2021]. Training a PWL model exactly is extremely difficult because, even in the
simplest case involving only one hyperplane, the problem remains NP-hard. The exact linear classification algorithm
takes O

(
ND+1

)
time to complete in the worst case, which is exponential with respect to the dimension D. Indeed,

Bertschinger et al. [2022] have shown that training fully connected neural networks is ∃R-complete. Additionally,
Goel et al. [2020] demonstrated that determining whether a 0-1 loss prediction is achievable by a network with K
neurons is polynomially solvable when K = 1, i.e., in the linear classification case. This can be verified by solving
a linear program or by running our LP-based algorithm for the linear classification problem. For the more general
case where K > 1, the problem is NP-hard.

To the best of our knowledge, only Arora et al. [2016] have proposed a one-by-one enumeration strategy to
train a two-layer ReLU neural network to a global optimum for convex objective functions. Later, Hertrich [2022]
demonstrated that an exhaustive combinatorial search across all O

(
NKD

)
possible partitions introduced by K

hyperplanes is essentially the best approach available.
However, Arora et al. [2016] only provided pseudo-code and a time complexity analysis, with no publicly available

code or empirical analysis to support their claims. Additionally, they did not demonstrate how to enumerate the
hyperplanes. From the description of their pseudo-code, it seems they assume these hyperplanes already exist. As
such, their discussion appears more like a conjecture, suggesting that a polynomial-time algorithm exists for this
problem, rather than presenting an immediately executable solution.

Moreover, the one-by-one enumeration strategy proposed by Arora et al. [2016] is impractical. To initiate the
algorithm, it requires all possible representations of hyperplanes to be pre-stored, which is both memory-demanding
and inefficient. As we have demonstrated, the possible partitions of hyperplanes have a size of O

(
ND

)
.

Nevertheless, in this chapter, we propose an algorithm to train a two-layer neural network exactly for arbitrary
loss functions, whereas previous complexity analyses have focused on either squared or convex loss functions. Our
approach can be easily generalized to the multilayer case by training it greedily, with the worst-case complexity
remaining the same. Unlike prior methods, our algorithm does not require all possible hyperplanes to be pre-stored.
Instead, the feasible ReLU networks are generated recursively by the generator that we design.

III.3.2 Problem specification
We extend the ReLU activation function to vectors x ∈ RD through entry-wise operation:
σ (x) = (max (0, x1) ,max (0, x2) , . . . ,max (0, xD)).

Consider a 2-layer feedforward ReLU neural network model with K hidden nodes. Each hidden node corresponds
to an affine transformation fwk

: RD+1 → R, which is defined by the distance to the homogeneous hyperplane Hk

with normal vector wk ∈ RD+1, ∀k ∈ K. These K affine transformations can be represented by a single affine
transformation fW 1 : RD+1 → RK , such that W T

1 = (w1,w2, . . . ,wK). In other words, W 1 ∈ RK×(D+1) is
a K × (D + 1) matrix defined by putting each vector wk in the row of W 1. Similarly, we can define a linear
transformation fW 2

: RK → R, such that W 2 = (α1, α2, . . . , αK) corresponds to weights of the hidden layer. Thus
the decision function f for a 2-layer feedforward ReLU neural network can be defined as

fW 1,W 2 = fW 2 · σ · fW 1 . (137)

Although the two parameters W 1,W 2 in (137) are hyperplanes in a continuous space, we have already very
familiar that hyperplanes can be characterized combinatorially through our discussion above. We denote the
number combinatorial search space for W 1,W 2 as SReLUNN. Therefore, the empirical risk minimization problem
for the 2-layer feedforward ReLU neural network model can be defined as the following optimization problem

(W ∗
1,W

∗
2) = argmin

W 1,W 2∈SReLUNN

E0-1 (W 1,W 2) , (138)

where E0-1 (W 1,W 2) =
∑

n∈N 1 [sign (fW 1,W 2 (x̄n)) 6= tn].

III.3.3 The combinatorial essence of the ReLU network
A 2-layer ReLU neural network is a piecewise linear (PWL) model, which can be represented using multiple hyper-
planes. Analogous to the linear classification problem, where we introduced two algorithms that characterize the
combinatorics of hyperplanes based on either data point combinations or prediction labels, the combinatorics of a
ReLU neural network can also be characterized in these two ways. These two different characterizations led to the

128

development of two powerful algorithms for constructing an exact ReLU network model. We will discuss these two
characterizations in detail in this section.

III.3.3.1 Hyperplane-based method

Combinatorial complexity Due to the homogeneity of the ReLU activation function (max (0, ab) = amax (0, b),
for a ≥ 0). The decision function introduced by the 2-layer ReLU network (137) can be written explicitly as

fW 1,W 2 (x) =
∑
k∈K

αk max (0,wkx̄) =
∑
k∈K

zk max (0, w̃kx̄) , (139)

where w̃k = |αk|wk, and zk ∈ {1,−1}.
Equation (139) implies that the decision boundaries of a 2-layer neural network are essentially K-combinations

of hyperplanes. The decision regions of a 2-layer network are controlled by the directions of the normal vectors to
these hyperplanes, which are determined by a length K binary assignment (z1, . . . zK) ∈ {1,−1}K .

Thus the combinatorial search space of the two-layer ReLU neural network SReLU (N,K,D) consists of Cartesian
product of K-combinations of hyperplanes and length K binary assignments with respect to a size N dataset in
general position. The size of this space is given by

|SReLU (N,D)| = 2K ×

 (
N
D

)
K

 = O
(
NDK

)
. (140)

The generator for the Cartesian product K-combinations and binary assignment can be easily constructed by
directly applying the Cartesian product fusion theorem described in Subsection II.2.3.4. As we explained in the
previous Chapter, we need to run a matrix inversion for each D-combination of data items in order to get the
representation for each hyperplane, this will take O

(
D3 ×

(
N
D

))
time. Therefore, the time complexity for the

exact ReLU neural network algorithm will have a complexity

O

2K ×

 (
N
D

)
K

+D3 ×
(
N
D

) = O
(
NDK

)
. (141)

Combination-combination nested generator in Haskell The difficulty here is to construct an algorithm
that enumerates the K-combinations of hyperplanes, rather than K-combinations of data points. As previously
mentioned, classical approaches for enumerating K-combinations of hyperplanes, such as the one-by-one enumera-
tion method proposed by Arora et al. [2016]. Through our discussion in Chapter II.3, we know that hyperplanes in
RD can be represented by D-combination of data items. Therefore, the K-combinations of hyperplanes are simply
K-combinations of D-combination of data items.

Instead of using a one-by-one enumeration approach, we can alternatively use the kcombs generator, introduced
in Subsection II.2.3.3 of Part II, as a foundation. The nested combination-combination generator is then constructed
as the composition of two combination generators. In Haskell, this generator can be specified as follows

�����
dcombsKcombs :: Int -> Int -> [Int] -> (Css, NCss)
dcombsKcombs d k = <setEmpty d, kcombs k.(!!d)> . kcombs d

which is parameterized by two integers: the dimension of the data d (assuming d >= 2) and the number of hy-
perplanes (hidden neurons) k. The types Css and (Css, NCss) represent the output types of the combinations
generated by kcombs and the nested combinations generated by dcombsKcombs d k, defined in Haskell as

�����
type Comb = [Int]
type Ncomb = [Comb]
type NCss = [[Ncomb]]
type Css = [[Comb]]

The setEmpty d function is defined as follows

129

n=1

n=3

n=0

n=2 [[]] [[1],[2]] [[1,2]]

[[]] [[1]]

[[]]

ncss' = [[[]], [[[1,2]]]]

[[]] [[1],[2],[3]] [[2,3],[1,3]] ncss = [[[]],[[[2,3]],[1,3]],[[[2,3],[1,3]]]]

convol_filt crj k ncss ncss' =

[[[]],
[[[2,3]],[[1,2]],[[1,3]]],
[[[1,2],[2,3]],[[1,3],[2,3]]
,[[1,3],[1,2]]]]

kcombs k

kcombs k

Figure III.3.1: A combination-combination nested generator, where hyperplanes are represented as 2-combinations of
data items, and the 2-layer ReLU networks with three hidden neurons are defined as 2-combinations of hyperplanes, i.e.,
k=2, d=2. The generation tree on the left of the figure illustrates the incremental generation process of the hyperplanes.
In each recursive step, the newly generated D-combinations of data points (hyperplanes) [[2,3],[1,3]] are used to
generate K-combinations of hyperplanes (ReLU network with K hidden neurons) ncss by running a kcombs k function,
a process implicitly indicated by the large blue arrow. These newly generated K-combinations of hyperplanes ncss
are merged with the previous K-combination of hyperplanes ncss' by convol_filt crj k function (which is defined
in Subsection II.2.3.3 of Part II). This produces the complete list of lists at this recursive step, where each inner list
contains ReLU network of a specific size.

�����
setEmpty d x
| (length x) <= d = x
| otherwise = (init x) ++ [[]]

which sets the d-th element of the input list x to empty. It is used to eliminate D-combinations of data items. Once
these D-combinations (hyperplanes) are used to generate new hyperplane combinations, they immediately become
redundant, so we eliminate them to save memory.

Although this specification is provably correct, it requires storing all possible hyperplanes before enumerating the
K-combinations of hyperplanes. This is a non-trivial task, as the number of hyperplanes in D-dimensional space is
O
(
ND

)
, which is extremely large. Storing all these hyperplanes in advance is both memory-intensive and inefficient,

making such methods impractical for real-world applications. Instead, we aim to fuse the second combination
generator within the first combination generator, then the nested combination generator can be expressed as a
single catamorphism. This approach allows incremental generation of K-combinations of hyperplanes, eliminating
the need to store all hyperplanes in advance.

According to the catamorphism fusion law (43), we need to develop an algebra dcombsKcombsAlg, that satisfies
the following fusion condition

h . kcombsAlg d = dcombsKcombsAlg d k. func h, (142)

where h = <setEmpty d, kcombs k.(!!d)> and <f,g> = pair f g is the categorical notation for the pairing
operator. In other words, the following diagram commute

Css

h
��

func Css

func h
��

kcombsAlg doo

(Css, NCss) func (Css, NCss)
dcombsKcombsAlg d k
oo

130

Consider the case where func is the join-list algebra. It can be verified that the third pattern of dcombsKcombsAlg d k
is defined as

<setEmpty d.fst,cvcrj k.curry.(cross (kcombs d.!!d) id)>.(cvcrj d.fst×cvcrj k.snd).tuple,
(143)

satisfies the fusion condition, where cvcrj k = convol_filt crj k defines the third pattern of the kcombs gen-
erator, and tuple (Join x y) = (x,y) function turns two configuration joined by Join constructor into a tuple.
Recall that f×g = cross f g is the cross operator introduced in Subsection II.2.2.2.

In Haskell, we can define dcombsKcombsAlg d k as

�����
dcombsKcombsAlg :: Int->Int-> ListFj Int (Css, NCss)-> (Css, NCss)
dcombsKcombsAlg d k Nil = ([[[]]], [[[]]])
dcombsKcombsAlg d k (Single a) = ([[[]],[[a]]],[[[]]])
dcombsKcombsAlg d k (Join (css1, ncss1) (css2, ncss2)) = (setEmpty d css, ncss)

where
css = cvcrj d css1 css2
ncss
| null (css!!d) = [[[]]]
| otherwise = cvcrj k (cvcrj k ncss1 ncss2) (kcombs k (css!!d))

Running (snd (cata (dcombsKcombsAlg 2 2) [1,2,3]))!!d produces the output
[[[1,3],[1,2]],[[2,3],[1,2]],[[2,3],[1,3]]], which consists of all possible 2-combinations of hyperplanes in
R2 with respect to the input sequence [1,2,3].

Intuitively, the algorithm is exhaustive because when we merge two partial configurations, (css1 , ncss1) and
(css2, ncss2), we first need to merge the nested combinations stored in the second element of the tuple, which
represent K-combinations of D-combinations, using cvcrj k ncss1 ncss2. Next, we merge the combinations
stored in the first element of the tuple by using css = cvcrj d css1 css2. Since css generates a new list of
D-combinations, we then create a new list of K-combinations using kcombs k (css!!d), which is merged with
cvcrj k ncss1 ncss2. The incremental generation process for this combination-combination nested generator is
illustrated in Fig. III.3.1.

III.3.3.2 Linear programming-based method

Combinatorial complexity In Section III.2.3, we have introduced that the hyperplanes can be represented by
their prediction labels (assignments). Similarly, K hyperplanes can be represented by K assignments yk, k ∈ K.
Equation (137) implies that a data item x is predicted to negative class by fW 1,W 2 (x) if and only it lies in the
negative sides of all hyperplanes Hk, ∀k ∈ K, because fW 1,W 2 (x) will return positive as long as there exists a k
such that w̃kx̄ > 0.

Therefore, the prediction labels of the 2-layer neural network yReLU consists of the union of positive prediction
labels for each hyperplane Hk, and the remaining data item, which lies in the negative side with respect to all K
hyperplanes will be assigned to negative class. In other words, if we denote y+ and y− as the positive and negative
predictions of y respectively, then we have

y+
ReLU =

⋃
k∈K

y+
k

y−
ReLU = D\y+

ReLU,

(144)

where \ is the set difference and
⋃

k∈K y+
k denote the union of y+

k , k ∈ K. For instance, y1 = (1, 1,−1,−1) and
y2 = (−1, 1, 1,−1), then y+

1 = {1, 2} and y+
2 = {2, 3}, thus y+

1 ∪ y+
2 = {1, 2, 3}.

By characterizing hyperplanes in terms of prediction labels, we do not need to compute the Cartesian product
of combinations of hyperplanes and length K binary assignments (z1, . . . zK). because the prediction labels for both

positive and negative orientation of hyperplanes are all included in the 2
∑D

d=0

(
N − 1
d

)
possible dichotomies, then

the prediction labels for ReLU network yReLU can be calculated from (144), this operation will take O (N ×K) time
for each K-combination of assignments. Thus the total complexity of the LP-base method will have a complexity
of

O

(
N∑

n=0

(LP (n,D)× Cover (n− 1, D)) +N ×K ×
(

Cover (N,D + 1)
K

))
= O

(
NDK

)
. (145)

131

Assignment-combination nested generator Similar to the previous case, the ReLU network model comprises
a combination of hyperplanes. The key difference from H-based methods is that the representation of the hyperplanes
now becomes assignments. Consequently, the combinatorial generator for LP-based methods is an combination-
assignment nested generator.

III.3.4 Further discussion
III.3.4.1 Acceleration methods

Symmetry fusion in hyperplane based method In our previous discussion on the hyperplane-based algorithm
for solving the 0-1 loss linear classification problem, we established the Symmetry Fusion Theorem 14, which exploits
the symmetry inherent in the 0-1 loss linear classification problems. This theorem states that the 0-1 loss for the
negative orientation of a hyperplane can be computed from the 0-1 loss of the same hyperplane in the positive
orientation. This result can indeed be extended to the ReLU network problem.

For a two-layer neural network, the data points can be classified into three categories based on their relationship
to the K hyperplanes defined by the K hidden neurons:

1. Data points that lie in the region where all K hyperplanes are on the positive side.

2. Data points that lie in the region where all K hyperplanes are on the negative side.

3. Data points that lie in the region where some hyperplanes are on the positive side and others are on the
negative side.

Assuming that we reverse the orientation of all K hyperplanes, the classification for data points that fall into the
class of the first two cases will be reversed, because the prediction labels of these data be reversed if the orientation
for all hyperplanes is reversed (because of the symmetry).

However, the classification of data points in the third category will remain unchanged. According to (144), the
prediction labels of the 2-layer neural network, yReLU, consist of the union of positive prediction labels for each
hyperplane Hk. Therefore, a data point that lies in the positive region of any hyperplane Hk will be classified as
positive. Consequently, for data points in the third category, there will always be some hyperplanes that classify
these points as negative. If we reverse the orientation of all hyperplanes, these data points will still be classified as
positive.

Therefore, we only need to consider the Cartesian product of K-combinations of hyperplanes with 2K/2 = 2K−1

possible binary assignments. This approach effectively reduces the algorithm’s running time by half.

Acceleration techniques for linear programming based method Similarly to the linear classification
problem, both the global upper bound and finite dominance relation can be easily incorporated into the LP-
based method for solving the ReLU network problem. Specifically, if we have a partial ReLU network assignment
y′

ReLU ∈ {1,−1}n, 1 ≤ n < N , it can be immediately discarded if its 0-1 loss is worse than the global upper bound.
This upper bound can be obtained by training the network using a standard gradient descent method.

However, when using a K-combination generator, the evaluators are typically only partially fusable, which limits
the effectiveness of the upper bound. Therefore, rather than relying on an upper bound that is only partially fusable,
it is often more efficient to directly fuse the selector.

Nonetheless, if the method relies solely on the assignment generator to solve this problem, which includes a
feasibility test to verify that the data partition is indeed the result of the combination of K hyperplanes, then the
use of the global upper bound technique would be highly effective.

III.3.4.2 Applying integer SDP generator to save memory

III.4 Decision tree problems
A decision tree is a tree-like model used in machine learning to make decisions based on data. Imagine a flowchart
or a series of “yes” or “no” questions that guide you to a final decision. Geometrically, each question or condition at
a node splits the data into two groups based on a feature’s value, these splits are parallel to the axis of the feature
space. For instance, at each node, the tree asks a question about a single feature: “Is the feature xd greater than
some value v?” This question divides the feature space into two regions, xd ≤ v and xd > v, through axis-parallel
hyperplanes xd = 0. Due to the unparalleled simplicity and interpretability of the decision tree model, algorithms

132

𝑥2

𝑥1 𝑥1

𝑥2

𝑥1

𝑥2

Figure III.4.1: An axis-parallel decision tree model (left), a hyperplane (oblique) decision tree model (middle), and
a hypersurface (defined by degree-2 polynomials) decision tree model (right). As the complexity of the splitting
functions increases, the tree’s complexity decreases (involving fewer splitting nodes), while achieving higher accuracy.

that can learn an accurate decision tree model—for instance, classification and regression trees (CART) [Breiman
et al., 1984], C4.5 [Quinlan, 2014] and random forest [Breiman, 2001a]—have achieved significant success across
various fields. Breiman [2001b] aptly noted, “On interpretability, trees rate an A+.”

In this Chapter, we show that the axis-parallel decision tree problem (DTree), hyperplane decision tree
problem (HDTree) and polynomial hypersurface decision tree problem (PHSDTree) can be solved exactly
by using the same algorithmic process.

III.4.1 Related studies
The classical approximate/heuristic algorithms for creating decision trees, such as CART and C4.5, usually employ a
top-down, greedy approach. Therefore, these approximate algorithms can only lead to solutions that are suboptimal.

To improve the accuracy of the decision tree model, there are two common approaches: First, we can solve the
axis-parallel decision tree problem to global optimal; Second, instead of constructing models that create axis-parallel
hyperplanes, more complex splitting rules can be applied. For example, a generalization of the classical decision tree
problem is the hyperplane (or oblique) decision tree, which employs hyperplane decision boundaries to potentially
simplify boundary structures. The axis-parallel tree model is very restricted in many situations. Indeed, it is easy
to show that axis-parallel methods will have to approximate the correct model with a staircase-like structure. In
contrast, the tree generated by using hyperplane splits is often smaller and more accurate than the axis-parallel
tree. It should be intuitively clear that when the underlying decision region is defined by a polygonal space partition,
it is preferable to use hyperplane decision trees for classification. Whereas the axis-parallel tree model can only
produce hyper-rectangles decision regions.

As we can see from Fig. III.4.1, we apply three different decision tree models—the axis-parallel decision tree,
the hyperplane decision tree, and the hypersurface decision tree (defined by a degree-two polynomial)—to classify
the same dataset. As the complexity of the splitting rule increases, the resulting decision tree becomes simpler and
more accurate.

However, both generalizations are very difficult to solve. It is well-known that the problem of finding the smallest
axis-parallel decision tree is NP-hard Laurent and Rivest [1976]. Similarly, for the hyperplane decision tree problem,
even the top-down, inductive greedy optimization approach—similar to the CART algorithm—is NP-hard to solve
exactly. This result comes from the fact that the 0-1 loss linear classification problem is considered as NP-hard. As
Murthy et al. [1994] explained,“ But when the tree uses oblique splits, it is not clear, even for a fixed number of
attributes, how to generate an optimal (e.g., smallest) decision tree in polynomial time.”

Due to the formidable combinatorial complexity of decision tree problems, the studies on decision tree problems
focus on either designing robust approximate algorithms [Wickramarachchi et al., 2016, Barros et al., 2011, Cai
et al., 2020] or developing exact algorithms that produce trees with specific structures, such as binary-split decision
trees [Mazumder et al., 2022, Bennett, 1992, Bennett and Blue, 1996]. In particular, a sheer amount of studies
are focused on optimal decision tree algorithms for datasets with binary features [Lin et al., 2020, Hu et al., 2020,
Narodytska et al., 2018, Aglin et al., 2021, 2020, Avellaneda, 2020, Verwer and Zhang, 2019, Jia et al., 2019,

133

Zhang et al., 2023, Mazumder et al., 2022], for which a dynamic programming solution exists. On the other hand,
algorithms addressing the axis-parallel decision tree problem in full generality primarily focus on using MIP solvers
[Aghaei et al., 2019, 2021, Bertsimas and Dunn, 2017, Günlük et al., 2021].

As with the other problems we’ve encountered, empirical risk minimization (ERM) for decision trees has been
proven to be NP-hard in its full generality. However, the problem defined by (146) is not NP-hard if the number
of leaves K and the number of features D are fixed. In this paper, we demonstrate how the axis-parallel split,
hyperplane, and polynomial hypersurface decision tree problems can be addressed using the same algorithmic
process.

III.4.2 Problem specification
Definition of the decision tree Analogue to the procedure of classical decision tree algorithms in literature,
these algorithms attempt to create a tree with binary splits. We denote a tree as T with type T : T, and a hyperplane
h with type h : H. The nodes of the tree can be divided into two sets:

Branch nodes: The branch nodes apply a split of the form wT x̃ < 0 (where x̃ = ρW (x̄) is the W -tuple
embedding of x̄). Data points that satisfy the split condition follow the left branch in the tree, and those
that do not follow the right branch. We denote the set of all branch nodes for a tree T as branch (T).
Leave nodes: The leaf nodes make predictions for each point that falls into them. We denote the set
of all leaf nodes for a tree T as leave (T). We refer to the connected region in RD defined by a leaf node
l as the decision region associated with leaf l.

When branch nodes are defined by hyperplanes, i.e., W = 1, x̃ = x̄, and the axis-parallel split involves only a single
variable at each split, this can be achieved by enforcing the normal vector w to have only one element equal to one,
with all other elements set to zero.

A tree of depth two can be illustrated as follows

1⃝
wT

1 x̃≥0

''OO
OOO

OOO
OOO

OOO
O

wT
1 x̃<0

wwooo
ooo

ooo
ooo

ooo

2⃝
wT

2 x̃<0

��~~
~~
~~
~

wT
2 x̃≥0

��@
@@

@@
@@

3⃝
wT

3 x̃<0

��~~
~~
~~
~

wT
3 x̃≥0

��@
@@

@@
@@

4⃝ 5⃝ 6⃝ 7⃝

MIP objective The optimal decision tree problem seeks to identify a tree T that minimizes the number of
misclassifications. This problem involves two key hyperparameters. The trade-off between accuracy and tree
complexity is managed either by fixing the number of branching nodes |T | (with the number of leaves being |T |+1)
or by adding a penalty term λ |T | to the objective function. Both approaches are equivalent because a fixed λ
corresponds uniquely to a tree with a fixed size |T |. In this exposition, we consider the case where |T | = K.
Another important hyperparameter controls the minimum number of data items required in each leaf, denoted as
Nmin. Given these parameters, we can formulate the optimal decision tree problem as follows

T ∗ = argmin
T∈SDTree

E0-1 (T)

s.t. |l| ≥ Nmin, ∀l ∈ leaves (T)
|T | = K�

(146)

where E0-1 (T) denotes the number of misclassifications of tree T , SDTree is the combinatorial search space consists
of all possible decision trees, and leave (T) are all leaves for tree T .

III.4.3 The combinatorial essence of decision tree problems
Axis-parallel decision tree problem The complexity of the axis-parallel decision tree algorithms is well-known
in the literature [Murthy et al., 1994, Mazumder et al., 2022]. For decision tree models with axis-parallel splits,
there are only N ×D distinct possibilities for each split. Due to the relatively low complexity of each split, heuristic
methods such as C4.5 and CART can be trained greedily by selecting the best split at each branch node through an

134

𝑥2

𝑥1

ℎ1 ℎ2 ℎ3

𝑥2

𝑥1

ℎ1

ℎ2

ℎ3

[ℎ1, ℎ2, ℎ3] [ℎ2, ℎ1, ℎ3]

𝑥2

𝑥1

ℎ1
ℎ2

ℎ3

𝑥2

𝑥1

ℎ1 ℎ2

ℎ3

[ℎ2, ℎ3, ℎ1][ℎ1, ℎ3, ℎ2]

𝑥2

𝑥1

ℎ1

ℎ2

ℎ3

[ℎ3, ℎ1, ℎ2]

𝑥2

𝑥1

ℎ1

ℎ2

ℎ3

[ℎ3, ℎ2, ℎ1]

𝑥2

𝑥1

ℎ1

ℎ2

ℎ3

Figure III.4.2: This example illustrates how the ordering (permutation) of hyperplanes affects the partitioning in a
decision tree model. The six possible permutations of three hyperplanes h1, h2, h3 resulting different partitions of the
space. Once a hyperplane is placed in the first position, the subsequent hyperplanes can only occupy the sub-regions
defined by the first hyperplane. This pattern holds true for the other hyperplanes as well.

exhaustive search of all N ×D splits. However, the exhaustive search approach for solving the axis-parallel decision
tree problem is generally considered intractable. This is because the number of possible axis-parallel trees in RD

with K branch nodes is
(
ND
K

)
, which corresponds to a complexity of O

(
NK

)
. Mazumder et al. [2022] reported

that exhaustive search algorithms for solving the decision tree problem become intractable when N = 104 ∼ 105,
and K = 2, 3.

Next, we will analyze the combinatorial complexity of decision tree problems involving hyperplane or polynomial
hypersurface splits.

Hyperplane and hypersurface decision tree problems Similar to the deep ReLU network model, the decision
tree model also consists of piecewise linear (PWL) functions. For a tree with K leaves, exactly K−1 hyperplanes are
required to partition the feature space. However, unlike the deep ReLU network model, the ordering of hyperplanes
within a set of combinations is critically important for the decision tree model. In Fig. III.4.2, we illustrate how
the ordering (permutation) of hyperplanes affects the partitioning in the decision tree model. Each permutation
of the 3-combinations of hyperplanes results in a different partition. We have shown only a subset of the possible
partitions involving three hyperplanes. When we choose the first hyperplane, the second hyperplane can belong
to either side of the first hyperplane, thus there exist 2K−1 possibilities for each permutation of hyperplanes. By
characterizing a decision tree as a K-permutation of hyperplanes, the type decision tree T is equivalent to a list of
hyperplane [H].

Following from the 0-1 loss Linear Classification Theorem 13, since decision tree models are essentially PWL
functions, Thm. 13 should immediately generalize to the hyperplane decision tree problem. Each split at a branch
node partitions RD into smaller connected regions, and the point-line duality remains valid in these smaller com-
ponents. Therefore, we can safely consider that the hyperplanes used to generate decision tree models consist of all
hyperplanes passing through D out of N points, and there exists

(
N
D

)
of them.

Define SKPH (N,K,D) as the combinatorial search space of all possible K-permutations of all possible hyper-
planes in RD„ with respect to a dataset of size N in general position. The size of SKPH (K,D) is

|SKPH (N,D)| = K!×

 (
N
D

)
K

 . (147)

Denote SHDtree (K,D) as the combinatorial search space of all possible hyperplane decision trees with K branch

135

𝑥2

𝑥1

ℎ1 ℎ2 ℎ3

𝑥2

𝑥1

ℎ1, ℎ2, ℎ3 : 𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 ℎ2, ℎ1, ℎ3 :𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑥2

𝑥1

𝑥2

𝑥1

ℎ2, ℎ3, ℎ1 : 𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒ℎ1, ℎ3, ℎ2 : 𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑥2

𝑥1

ℎ3, ℎ1, ℎ2 : 𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑥2

𝑥1

ℎ3, ℎ2, ℎ1 : 𝐼𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝑥2

𝑥1

ℎ1 ℎ2 ℎ3

ℎ1 ℎ2 ℎ3

ℎ1 ℎ2

ℎ3

ℎ1 ℎ2 ℎ3

ℎ1 ℎ2 ℎ3

ℎ1 ℎ2 ℎ3

Figure III.4.3: When representing hyperplanes as combinations of data items, the data points used to construct
subsequent hyperplanes can only be selected from the sub-regions defined by the previous hyperplane. For instance,
if the data points used to construct the second hyperplane h2 come from two different regions divided by the initial
hyperplane h1, then any decision tree that uses h1 followed by h2 is infeasible. Among the six permutations of the
three hyperplanes, only one feasible permutation exists [h2, h1, h3].

nodes in RD. Given that there are 2K−1 possibilities for each K-permutation of hyperplanes, the combinatorial
complexity of a hyperplane decision tree problem with K split (K + 1 leaves) in D-dimensional space is

|SHDtree (D,K)| = 2K−1 × |SKPH (N,D)| = O
(
NDK

)
, (148)

From our previous discussion, we know that hypersurface decision boundaries are isomorphic to hyperplanes
in a higher-dimensional embedding space. To calculate the combinatorial complexity of a hypersurface decision
tree, we simply count the number of possible hyperplanes in the embedding space G =

(
N +W
D

)
, where W is

the degree of the polynomial for defining hypersurface G. Hence the combinatorial complexity of the hypersurface
decision tree problem is O

(
NGK

)
.

The feasibility of K-permutation of hyperplanes Equation (148) shows that the hyperplane decision tree
exhibits the same asymptotic complexity as the 2-layer neural network problem. This is not surprising, as both
models consist of K splitting hyperplanes.

At first glance, the big O notation in (148) may seem to obscure a significantly larger constant compared to
the combinatorics of the 2-layer ReLU neural network problem. However, the true combinatorial complexity of this
problem is much smaller than what we have given in (148). This is because each hyperplane splits the space into
two disjoint regions, and subsequent hyperplanes need only be constructed from data points within these smaller
regions.

Consequently, most of the configurations in SHDtree (N,D,K) are infeasible and can be discarded. For instance,
if the data points used to construct the second hyperplane h2 come from two different regions divided by the initial
hyperplane h1, then any decision tree that uses h1 followed by h2 is infeasible. As illustrated in Fig. III.4.3, although
six 3-permutations of hyperplanes are shown, the only feasible configuration is [h2, h1, h3].

III.4.4 Efficient hyperplane decision tree generators
III.4.4.1 Difficulties in constructing a hyperplane decision tree (K-permutation of hyperplanes)

generator

In this section, we describe an efficient recursive generator for producing hyperplane decision trees. This generator
can be easily adapted to solve both the axis-parallel decision tree and the hypersurface decision tree problems. To
simplify the discussion, we will focus on the hyperplane decision tree generator.

136

n=0

n=1

n=2

[]

[1]

[2,1] [3,1] [4,1]

[2]

[1,2] [3,2] [4,2] [1,3] [2,3] [4,3] [1,4] [2,4] [3,4]

[3] [4]

Figure III.4.4: The classical K-permutation generator (K = 2) based on sequential decision process (catamorphism
over cons-list datatype). We begin with an empty configuration [] and recursively select elements from the input
sequence [1, 2, 3, 4] of length N = 4. At each recursive stage n, there are N − n possible selection choices.

In the analysis of the combinatorial essence of the hyperplane decision tree problem presented earlier, we demon-
strated that the key to solving the hyperplane decision tree problem is constructing a generator for generating
K-permutation of hyperplanes. Analogue to the ReLU neural network problem, where a combination-combination
nested generator is employed. TheK-permutation of hyperplanes generator is the same as a combination-permutation
nested generator. It consists of two separate sub-generators: one for generating D-combinations of data points (hy-
perplanes), and another forK-permutations, which recursively takes the hyperplanes generated by the first generator
and uses them to produce K-permutations of hyperplanes.

Similar to the case of the combination-combination nested generator, the ordinary K-permutation genera-
tor based on sequential decision process (catamorphism over cons-list datatype), cannot be used to construct a
combination-permutation nested generator. For instance, the classical K-permutation generator, as depicted in
Fig. III.4.4, is designed based on the definition of K-permutations. It enumerates all possible K-permutations by
recursively selecting one element from the input list. This generator has been applied to solve the rule list problem
[Angelino et al., 2018], where Angelino et al. [2018] execute the generator using a depth-first approach.

However, this classical K-permutation generator is not well-suited for this problem. Since executing the classical
K-permutation generator requires storing the all input data. In the decision tree problem, this input sequence
consists of all possible hyperplanes in RD, which has a size of O

(
ND

)
in size. Generating all these hyperplanes is

both time-consuming and memory-intensive.

III.4.4.2 Haskell implementation of the combination-permutation nested generator

To address the limitations posed by the classical K-permutation generator based on the cons-list datatype, we need
to determine how to effectively “merge” newly generated hyperplanes with existing trees. For problems with a
combinatorial structure based on K-permutations, at least two approaches can be employed to address this issue,
which will be explored in the following discussion.

Join-list K-permutation generator Analogous to the combination-combination nested generator introduced
for solving the ReLU network problem, the combination-permutation nested generator discussed here is nearly
identical, with the only difference being that K-combinations of hyperplanes are replaced by K-permutations. This
generator can be defined based on the kperms generator introduced in Section II.2.3.

The inefficient Haskell specification for the combination-permutation nested generator is defined as follows

�����
dcombsKperms :: Int -> Int -> [Int] -> (Css, Tss)
dcombsKperms d k = <setEmpty d, kperms k.(!!d)> . kcombs d

where Tss represents a list of lists of decision trees, and each decision tree is a permutation of hyperplanes. In
Haskell, Tss is defined as follows

�����
type T = [Comb]
type Tss = [[T]]

137

n=1

n=3

n=0

n=2 [[]] [[1],[2]] [[1,2]]

[[]] [[1]]

[[]]

tss' = [[[]], [[[1,2]]]]

[[]] [[1],[2],[3]] tss =[[[]],[[[2,3]],[[1,3]]],
[[[2,3],[1,3]],[[1,3],[2,3]]]]

convol_filt crm k tss tss’ =

[[[]],
[[[2,3]],[[1,2]],[[1,3]]],
[[[2,3],[1,3]],
[[1,3],[2,3]],
[[1,2],[1,3]],
[[1,3],[1,2]],
[[1,2],[2,3]],
[[2,3],[1,2]]][[2,3],[1,3]]

kperms k

kperms k

Figure III.4.5: A combination-permutation nested generator, where hyperplanes are represented as 2-combinations
of data items, and decision trees are defined as 2-permutations of hyperplanes, i.e., k=2, d=2. The generation tree
on the left of the figure illustrates the incremental generation process of the hyperplanes. In each recursive step, the
newly generated D-combinations of data points (hyperplanes) [[2,3],[1,3]] are used to generate K-permutations
of hyperplanes (decision trees with K branch nodes) tss by using kperms function, a process implicitly indicated
by the larger arrow. These newly generated K-permutations of hyperplanes tss are merged with the previous K-
permutations of hyperplanes (decision trees) tss' by convol_filt crm k function (which is defined in Subsection
II.2.3.3 of Part II). This produces the complete list of lists at this recursive step, where each inner list contains decision
trees of a specific size.

The fusion condition here is almost identical to the fusion condition that we discussed in Chapter III.3, so we
will not repeat it. The fused combination-permutation nested algebra can be defined in Haskell as follows

�����
dcombsKpermsAlg :: Int->Int-> ListFj Int (Css, Tss)-> (Css, Tss)
dcombsKpermsAlg d k Nil = ([[[]]], [[[]]])
dcombsKpermsAlg d k (Single a) = ([[[]],[[a]]],[[[]]])
dcombsKpermsAlg d k (Join (css1, tss1) (css2, tss2)) = (setEmpty d css, tss)

where
css = cvcrj d css1 css2
tss
| null (css!!d) = [[[]]]
| otherwise = cvcrm k (cvcrm k tss1 tss2) (kperms k (css!!d))

Evaluating both (snd (dcombsKperms 2 2 [1,2,3]))!!2 and
(snd (cata (dcombsKpermsAlg 2 2) [1,2,3]))!!2 give us the same result
[[[1,3],[1,2]],[[1,2],[1,3]],[[2,3],[1,2]],[[1,2],[2,3]],[[2,3],[1,3]],[[1,3],[2,3]]]. The incre-
mental generation process for the decision tree generator is illustrated in Fig. III.4.5.

Recursive interleave As mentioned earlier, K-permutations are simply the permutations of K-combinations,
meaning they can be generated by exhaustively reorganizing each K-combination.

Generating K-permutations based on K-combinations offers two main advantages. First, the number of possible
K-permutations is K! times larger than the number of K-combinations, so storing only the K-combinations during
the algorithm runtime can significantly reduce memory usage. Second, this method involves building each decision
tree recursively, allowing us to discard infeasible partial trees before completing them. In contrast, the direct K-
permutation generation method requires merging two partial trees of different sizes, making the construction of
complete decision trees less efficient.

This alternative approach for generating K-permutations is called “recursive interleave” method. Generating
K-permutation based on K-combinations closely related to the adds function that we have introduced in Section

138

II.2.3 of Part II. The adds function is also known as “interleave” function [Bird and Wadler, 1988], which is defined
as

�����
interleave :: a -> [a] -> [[a]]
interleave a [] = [[a]]
interleave a (b:x) = [a:b:x] ++ map (b:) (interleave a x)

Intuitively, the ways of interleaving a with x can be done by appending a to the beginning of the list b:x, or
starting with b and then interleaving a with x. Indeed, the merge operator used in kpermsAlg and permsAlg is
based on the join-list version of the interleave function [Bird and Gibbons, 2020].

Similarly, when recursively inserting a list of elements x into another list y ,we can recursively apply the
interleave function to each element in x, defined as follows

�����
recInterleave :: [a] -> [a] -> [[a]]
recInterleave x y = foldr f [y] x

where f a = concat. map (interleave a)

For instance, Evaluating recInterleave [2,3] [1] gives us
[[2,3,1],[3,2,1],[3,1,2],[2,1,3],[1,2,3],[1,3,2]].

For any combinatorial structures with a size constrains, such as K-combination and K-permutation, using the
filtered convolution product convol_filt that we introduced can lead to a more efficient and elegant definition of
the generator.Designing a generator based on convol_filt requires determining the combining pattern for merging
a list of size k configurations with the K − k-size configurations to satisfy the size constraint.

In the case of designing a K-permutation generator based on K-combinations, we need to consider how to
“merge” a list of k-combinations, denoted as cs with the K−k-size permutations ts (in this problem, permutations
are decision trees, so we denote a list of permutations as ts), for all 0 ≤ k ≤ K in a list of lists of permutations
tss' generated in the previous recursive step. This can be accomplished by recursively interleaving each element c
in cs with each element t in ts. This function can be defined using the cross product operator, named cr_intlv
(short for “cross interleave”), as following

�����
cr_intlv :: [[a]] -> [[a]] -> [[a]]
cr_intlv cs ts = concat $ crp recInterleave cs ts

Finally, the combination-permutation generator for generating K-permutations of hyperplanes can be defined
as follows

�����
dcombsKpermsAlg ' :: Int->Int-> ListFr Int (Css, Tss)->(Css, Tss)
dcombsKpermsAlg ' d k Nil = ([[[]]], [[[]]])
dcombsKpermsAlg ' d k (Cons a (css', tss')) = (setEmpty d css, tss)

where
css = cvcrj d [[[]], [[a]]] css'
ncss = kcombs k (css!!d)
tss
| null (css!!d) = [[[]]]
| otherwise = convol_filt cr_intlv k ncss tss'

Denote the combinations and decision trees generated in the previous recursive step as css' and tss'. This
recursive interleave method operates as follows: in each recursive step of the D-combination generator, there is a
list of new hyperplanes (D-combinations) are generated. Instead of creating a new list of trees tss by running a
K-permutations generator, we generate all possible nested combinations (i.e., K-combinations of hyperplanes) ncss
with respect to all size D combinations, i.e., the elements in the list css!!d using the kcombs generator. We then
interleave each combination of hyperplanes in ncss with the trees tss' generated in the previous step.

Evaluating cata (dcombsKpermsAlg' 2 3) [1,2,3] produces the same result as using dcombsKpermsAlg, re-
sult in
([[[]],[[3],[2],[1]],[]],[[[]],[[[2,3]],[[1,2]],[[1,3]]],[[[1,2],[2,3]],[[2,3],[1,2]]...

139

III.4.5 Further discussion
III.4.5.1 Acceleration techniques

Combinatorial constraints In the study of tree-based models, it is common to incorporate constraints such as
requiring the number of data points in each leaf to be greater than Nmin to avoid overfitting. Despite its simplicity
and effectiveness, classical decision tree algorithms optimized through continuous methods, such as CART or C4.5,
struggle to incorporate such constraints. In contrast, adding more splitting hyperplanes (branch nodes) typically
decreases the number of data points in each leaf. This satisfies the segment-closed property and thus can be
effectively integrated into the kpermsAlg algebra. By incorporating these constraints, the filtering process reduces
the number of configurations generated, thereby making our algorithm more efficient.

Hyperplanes lies on the convex hull Hyperplanes that lie on the convex hull of the dataset can be safely
discarded. This is because, for such hyperplanes, at least one of the resulting leaves is empty, thereby contributing
nothing to the prediction. Consequently, the partition of the dataset remains unchanged without this hyperplane.

This principle is not limited to hyperplanes lying on the convex hull of the entire dataset. When splitting each
leaf of a partial tree, hyperplanes that lie on the convex hull of the data points within a leaf node can also be
ignored, as they do not alter the partition of the data within that region.

Pessimistic upper bound and optimistic lower bound

Definition 33. Fixed leaves. Fixed leaves are defined as leaves for which no new branch nodes are added to
their ancestors; rather, only new branch nodes are added to their subtrees, thereby splitting the decision regions
determined by these fixed leaves into smaller regions.

For instance, when we add a hyperplane h1 before another hyperplane h2, but after hyperplane h3. This new
tree is determined by [h3, h1, h2]. The decision region of the h2 will be modified based on the decision region of h1,
whereas the decision region determined by h3 will stay unchanged but is split into smaller regions by h2 and h1.
Here, h3 is referred to as a fixed leave and h2 is considered an unfixed leaf.

The determination of the pessimistic upper bound and optimistic lower bound for a partial tree is based on the
following facts.

Fact 6. Adding more hyperplanes to a decision region can only decrease the 0-1 loss of this region.

Proof. When adding a new decision hyperplane (branch node) to one of the leaves of a partial tree, there are two
possible scenarios. Denote the dataset in a leaf as M , with M+ correctly classified and M− misclassified data
points, where |M+| ≥ |M−| by definition. Adding a new hyperplane results in two smaller leaves, M1 and M2.
There are two cases:

If the prediction class in both new leaves remains unchanged after adding the hyperplane, then the misclassified
data points are distributed between M1 and M2. Then M−

1 ∪M−
2 =M−. Therefore, the 0-1 loss for these two new

leaves is
∣∣M−

1

∣∣+ ∣∣M−
2

∣∣ = |M−|.
If the prediction in either of the new leaves changes, denote these leaves as M ′

1 and M ′
2. Assume the prediction

in M ′
2 has changed. According to the definition,

∣∣M ′−
2

∣∣ ≤ ∣∣M−
2

∣∣ because we assign the label of the majority class in
this region. Thus the

∣∣M−
1

∣∣+ ∣∣M ′−
2

∣∣ ≤ |M−|. A similar result holds if the prediction of M1 changes or if predictions
in both M1 and M2.

Given a partial tree with K − i fixed leaves, the pessimistic upper bound can be derived by assuming that the
0-1 loss remains the same after adding new hyperplanes to the current fixed leaves. Conversely, the optimistic lower
bound can be obtained by assuming that the decision regions of the i leaves can be perfectly classified (i.e., zero
0-1 loss).

Therefore, if the objective value of a tree configuration is worse than the global upper bound or the optimistic
lower bound of a partial tree, then this partial tree can be safely discarded without further extension.

140

III.5 The K-clustering problems
III.5.1 Related studies
Clustering is the grouping of similar objects and clustering of a set is a partition of elements that is chosen to
minimize some measure of similarity, there are various kinds of measures of dissimilarity, called “distance.” There
are some frequently used distance metrics, such as Lp norm, the special case for p = 1, 2 is known as taxicab distance
or Manhattan distance and Euclidean distance. These two distances relate to the well-known K-medians problem
and K-means problem. A tractable and exact algorithm for the K-clustering problem will have a huge impact on
many fields. Unfortunately, the K-clustering problem is well known to be NP-hard for all dimensions D ≥ 2 [Aloise
et al., 2009, Mahajan et al., 2012].

Numerous studies have been conducted to obtain exact solutions for the K-means problem. For instance,
Du Merle et al. [1999] developed an algorithm that combines an interior point method with branch-and-bound.
Interestingly, the computation time of their algorithm tends to decrease rather than increase with the number of
clusters. Diehr [1985] proposed a branch-and-bound algorithm as well, but its performance degrades significantly
as the number of clusters increases and the separation between clusters diminishes. Cutting-plane algorithms have
also been employed to solve the K-means problem, as seen in the works of Grötschel and Wakabayashi [1989] and
Peng and Xia [2005]. Peng and Xia [2005]’s cutting-plane algorithm is a refined version of Tuy [1964]’s cutting-plane
algorithm.

A relaxed version of the K-clustering problem involves constraining the cluster centers to be chosen only from
the input data itself; this variant is known as the K-medoids problem. Unlike the K-means problem, which allows
centroids to be at any point in the feature space, the K-medoids problem restricts centroids (medoids) to be
selected exclusively from the actual data points. This approach allows for the precomputation of pairwise distances
between data items, thereby eliminating the need to compute distances during the algorithm’s execution. As a
result, the K-medoids problem becomes a dimension-independent problem. Additionally, the K-medoids problem
can accommodate arbitrary dissimilarity measures. Despite being a relaxed form of the K-clustering problem, the
K-medoids problem remains NP-hard to optimize directly Megiddo and Supowit [1984].

Fayed and Atiya [2013] use a mixed breadth-depth first strategy BnB algorithm to solve the K-center problem,
and Du Merle et al. [1999] combine the interior point algorithm with BnB to solve the K-means problem. Meanwhile,
Peng and Xia [2005] use a cutting-plane algorithm for solving the K-means problem.

The use of the BnB method predominates research on this problem [Ren et al., 2022, Elloumi, 2010, Christofides
and Beasley, 1982, Ceselli and Righini, 2005]. An alternative approach is to use off-the-shelf mixed-integer pro-
gramming solvers (MIP) such as Gurobi [Gurobi Optimization, 2021] or GLPK (GNU Linear Programming Kit)
[Makhorin, 2008]. These solvers have made significant achievements, for instance, Elloumi [2010], Ceselli and Righini
[2005]’s BnB algorithm is capable of processing medium-scale datasets with a very large number of medoids. More
recently, Ren et al. [2022] designed another BnB algorithm capable of delivering tight approximate solutions—
with an optimal gap of less than 0.1%—on very large-scale datasets, comprising over one million data points with
three medoids, although this required a massively parallel computation over 6,000 CPU cores.

III.5.2 Problem specification
From (108), we have seen the definitions of the K-means problem for both continuous variable −→µ and combinatorial
variable s. The definition of the K-clustering problem is almost the same, with the only difference being that the
distance function used in the K-clustering problem is not restricted to the Euclidean distance, but can be any
distance function.

By fixing a data set D and fixing the cluster number to K, we can define the objective function of the K-clustering
problem over continuous variables as

Ekcluster
(−→µ) = ∑

µk∈U

∑
xn∈Ck

d (xn,µk) . (149)

Then the K-clustering problem requires finding an optimal centroids vector −→µ ∈ RDK which minimize the K-
clustering objective function,

−→µ ∗ = argmin
−→µ∈RDK

Ekcluster
(−→µ) = ∑

µk∈U

∑
xn∈Ck

d (xn,µk) . (150)

Similarly, the K-clustering problem defined over combinatorial variable s = (α1, α2, . . . , αN) ∈ Skasgns is rendered
as

141

s∗ = argmin
s∈Skasgns

Ekcluster (s) =
∑
k∈K

∑
n∈N

1 [sn = k] d (xn,µk)
2

, (151)

where function 1 [] returns 1 if the Boolean argument sn = k is true, and 0 if false.
As we mentioned, both the K-clustering and the K-medoids problems attempt to minimize the sum of the

within-cluster distances for arbitrary distance functions. In contrast to the K-clustering problem, the K-medoids
choose some data points in the dataset D as the centroids (medoids). In other words, U ⊆ D for the K-medoids
problem. Thus we can define the K-medoids problem as

U∗ = argmin
U

Ekmedoids (U)

s.t. U ⊆ D, |U| = K,
(152)

where E (U) =
∑

k∈K
∑

xn∈Ck
d (xn,µk) is the objective function for the K-medoids problem, and U∗ is a set of

centroids that optimize the objective function E (U).
The constraints of the K-medoids problem enforce the continuous variable −→µ ∈ RDK to become a combinatorial

variable U ⊆ D, making the K-medoids problem dimension-independent. In this case, the distance between each
data item and the medoids can be precomputed by calculating the pairwise distances between data items, which
requires only O

(
D ×N2

)
time. In contrast, in the K-clustering problem, the centroids can lie anywhere in RD,

and each distinct set of centroids results in a unique objective value. From the perspective of the combinatorial
variable s, each distinct s in Skasgns produces a different set of centroids. Since the size of Skasgns is O

(
KN

)
, it is

impractical to precompute all possible centroids and their distances to each data item for large-scale data.

III.5.3 The combinatorial essence of the K-clustering problems
K-medoids problem The choice of centroids in the K-clustering problem is isomorphic to RD×K , which is
infinitely large. However, by applying to constrain to the K-clustering problem, the choice of centroids is finite.
The search space in the K-medoids problem is much more restricted than in the K-clustering problem, by the
MIP specification of the K-medoids problem, C (zc) constraints the choice of our centroids to be distinct and
must be chosen from data. Following the exhaustive search paradigm that we mentioned before, the obvious
strategy for solving the K-medoids problem is to enumerate all possible centroids zc = {µk} , ∀k ∈ K, wherein
lies at least one set of such centroids determining an assignment which is optimal, it follows that there are only
N×(N − 1)×· · ·×(N −K) =

(
N
K

)
ways of selecting centroids whose corresponding assignments are potentially

distinct. In other words, the K-medoids problem can be solved exactly by selecting the best K-combinations of
data points as the centroids.

K-means problem Following our discussion in Section II.3.4, Lemma 14 demonstrate that the optimal solution
to the K-means clustering problem must be a Voronoi partition. At the same time, Thm. 12 shows that the all
possible Voronoi partition for the K-means problem is essentially the Cartesian product of k-combinations subset
and length k binary assignments, for all 1 ≤ k ≤ K + (K − 1)D − 1. Thus solving the K-means problem exactly
requires exhaustively enumerating all possible Cartesian product of k-combinations subset and length k binary
assignments, and hence the size of the search space of the K-means problem Skmean has a complexity of

|Skmeans| =
K+(K−1)D−1∑

d=1

2d
(

(K − 1)N
d

)
= O

(
NK+(K−1)D−1

)
. (153)

2-means problem In the special case of K = 2, we have proved that the 2-means clustering problem is equiv-
alent to the linear classification problem in Section II.3.4. Hence the 2-means clustering problem can be solved
exhaustively by enumerating all possible cells of the dual arrangement ϕ (D). Thus the combinatorial search space

of the 2-means clustering problem has a size of
∑D

d=0

(
N
d

)
= O

(
ND

)
.

142

III.6 Time-space complexity trade-off in designing exact algorithms
In all our previous discussions, we focused primarily on the time efficiency of the algorithms, as it has been the
central concern in designing combinatorial optimization and generator algorithms. However, as we have noted
many times, achieving superior time efficiency often comes with the cost of increased memory usage. This trade-off
is a critical consideration in algorithm design, particularly in large-scale problems where both time and memory
resources are limited.

To address this trade-off effectively, we must navigate the balance between time and space complexities, using
specific techniques that mitigate excessive memory usage while maintaining reasonable execution times. Here, we
explore three key aspects that can help guide us in managing this trade-off.

Selection of generators Our algorithm design framework is based on deriving an efficient algorithm from an
initially inefficient exhaustive search specification. As a characteristic of many successful theories, in mathematics
as well as in natural science, that they can be presented in several apparently independent ways, which are in a
useful sense provably equivalent [Hoare, 1997]. Different definitions can be safely and consistently used at different
times and for different purposes.

In our context, different generators for generating the same combinatorial structures will serve as definitions
for different purposes. In Chapter II.1 of Part II, we introduce four classes of combinatorial generators. Below, we
summarize the advantages and limitations of each generator in the context of combinatorial optimization.

First, the lexicographical generation method is inefficient for exhaustive generation and is non-recursive.
As a result, it does not benefit from acceleration techniques that we introduced, such as fusion or dominance
relations. Since configurations are generated one-by-one, this generator has the advantage of being embarrassingly
parallelizable and consumes only O (1) space during run-time.

Second, sequential decision processes, which are the central focus of this thesis, are particularly well-suited
for most combinatorial optimization tasks. These generators are both efficient and flexible. Their efficiency is
demonstrated by their low amortized time complexity, embarrassingly parallelizable nature, and ability to incorpo-
rate various acceleration techniques, such as fusion and thinning. Their flexibility lies in two key aspects: First, we
can integrate backtracking, allowing the use of different search strategies for different tasks. Second, the principles
for designing more complex SDP generators are directly applicable, as discussed in Subsection II.2.3.4.

The combinatorial Gray code generation, as noted, can be considered a subclass of SDP generation. However,
when analyzed independently, it possesses nearly all the advantages of SDP generators but lacks embarrassingly
parallelizability and the ability to incorporate backtracking.

Lastly, the integer sequential decision process falls between SDP generation and Gray code generation. It
may be more efficient than classical SDP generators for generating all configurations of the same combinatorial
structure, as manipulating integers is typically faster than handling combinatorial configurations, which are usually
stored in lists. However, when applied to combinatorial optimization, this generator may require running an
unranking function for each subconfiguration to evaluate their objective values. This additional step can result in
a slower algorithm compared to SDP generators.

Evaluation in partial fusable generator This trade-off is primarily observed in generators that are only
partially fusable with the evaluator. By partially fusable generators, we refer to cases where a non-prefix-closed
predicate is relaxed to become prefix-closed in order to enable fusion within the generator. This often results in
situations, which we have encountered frequently, where an incomplete configuration (i.e., partial configurations
that satisfy the relaxed predicate but not the final predicate) cannot be evaluated.

In such cases, we often face a choice between evaluation strategies. The first option is to evaluate the complete
configuration directly during generation. By evaluating the objective of a complete configuration while generating,
we only need to store the best configuration encountered at each recursive step. This allows for the fusion of the
selector into the generator, although this fusion is only partially applicable. Since the predicate has been relaxed,
there is limited information to justify the optimality of these incomplete configurations. Moreover, this strategy is
well-suited to vectorized implementations and thus also appropriate for parallel implementation

Alternatively, we can choose to evaluate configurations incrementally throughout the recursion. We have demon-
strated that this approach can lead to significant speed-ups, particularly in solving the 0-1 loss linear classification
problem [Xi and Little, 2023]. However, this method requires more memory than the previous approach and is
more difficult to implement in parallel.

143

Methods Efficiency Memory
Usage

Parallelizability

Catamorphism
with backtracking

Better
best-case

complexity

Much
Less

memory
usage

Requires communication

Catamorphism
without

backtracking

Better
worst-case
complexity

More
memory

usage

No communication

Table 3: Comparison between the catamorphism with backtracking technique and ordinary catamorphism over join-list
datatype.

Search strategies The search strategies are discussed in detail in Subsection II.2.3.4, and we summarize them in
Table 3. In brief, the primary advantage of using backtracking techniques is the potential for significantly reduced
memory usage.

However, with backtracking, communication between processors becomes necessary, as some processors may need
to wait for others to finish due to dependencies introduced by the backtracking process. In contrast, the classical
catamorphism approach, which does not employ backtracking and is commonly referred to as a breadth-first search
strategy in BnB studies, requires no inter-processor communication and is much easier to implement on GPUs.

144

Part IV
End-to-end implementation in Haskell
In this final part, we present two Haskell implementations of the algorithms for solving the 0-1 loss linear classi-
fication problem and the K-medoids problem. We have discussed the definitions of these two problems in detail in
Chapter III.2 and Chapter III.5 in Part III.

From our discussion in Part III, both exact algorithms are the first polynomial-time algorithms for solving their
respective problems and are embarrassingly parallelizable. In this section, we empirically demonstrate that our
polynomial-time complexity predictions hold true. Moreover, we show that the state-of-the-art MIP solver (GLPK)
and branch-and-bound (BnB) algorithms exhibit exponential asymptotic complexity in the worst case. For the
classification problem, our empirical analysis on UCI datasets shows that our exact algorithm consistently achieves
the best 0-1 loss among other algorithms for predictions. Similarly, EKM always obtains the best objective value
compared with existing approximate algorithms on both UCI datasets and synthetic datasets.

145

IV.1 0-1 loss linear classification algorithm
In our previous research [He and Little, 2023], we presented an end-to-end implementation of an exact 0-1 loss
linear classification algorithm, E01-ICE, short for “exact 0-1 loss incremental cell enumeration algorithm,” which
was developed based on the 0-1 loss Linear Classification Theorem 13. This algorithm was constructed using a
catamorphism over the snoc-list datatype through the foldl operator.

Although our algorithm is referred to as a “cell enumeration algorithm,” it actually enumerates only the “vertices”
of the dual arrangement HD. We refer to it as a cell enumeration algorithm to emphasize the fact that it implicitly
enumerates all possible “cells” HD.

In this chapter, we revisit this problem and demonstrate an end-to-end implementation of the same algorithm,
but now based on the join-list datatype.

IV.1.1 An efficient combination-sequence generator
According to Thm. 13, the 0-1 loss linear classification problem can be solved exhaustively by enumerating all
possible size-D sublists (combinations) of data items. To evaluate the objective value of each hyperplane, we need
to pair each size-D sublist with the data sequence. This implies that the configuration for solving the problem is
the Cartesian product of sequences and combinations. A D-sublist-sequence generator will enumerate all such pairs
of combinatorial configurations, and by evaluating the 0-1 loss over these configurations, we are guaranteed to test
every possible assignment, ensuring that we find the optimal solution.

In Chapter II.2 Section II.2.3, we defined the following algebras based on the join-list datatype for enumerating
size-D sublists and sequences

���������
dsubsAlg :: Int -> ListFj a [[a]] -> [[a]]
dsubsAlg d Nil = [[]]
dsubsAlg d (Single a) = [[],[a]]
dsubsAlg d (Join x y) = filter (maxlen k)(crj x y)

where maxlen d x = (length x) <= d

seqnAlg :: ListFj a [[a]] -> [[a]]
seqnAlg Nil = [[]]
seqnAlg (Single a) = [[a]]

where the size-D sublists generator is obtained by incorporating the segment-closed predicate maxlen into the
ordinary sublists generator.

According to the Thm. 3, the Cartesian product of D-sublists and sequence can be constructed easily by applying
the Cartesian product fusion algebra cpalg. Thus the Cartesian product of theD-sublists and the sequence generator
can be defined as

���������
dsubsseqnAlg d = cata (cpalg (ksubsAlg d) seqnAlg)

Evaluating dcombsseqn 2 [1,2,3] gives us the Cartesian product of sublists with sizes smaller than or equal to
two and input sequence
[([],[1,2,3]),([3],[1,2,3]),([2],[1,2,3]),([2,3],[1,2,3]),([1],[1,2,3]),([1,3],[1,2,3]),([1,2],[1,2,3])].

Alternatively, the generator dcombsseqn can be defined explicitly as following join-list algebra

���������
dsubsseqnAlg :: Int -> ListFj a [([a],[a])] -> [([a],[a])]
dsubsseqnAlg d Nil = [([],[])]
dsubsseqnAlg d (Single a) = [([],[a]),([a],[a])]
dsubsseqnAlg d (Join x y) = filter (maxlenfst d) (crp merge x y)

where maxlenfst k x = (length (fst x)) <= k

merge :: ([a],[a]) -> ([a],[a]) -> ([a],[a])
merge x1 x2 = ((fst x1) ++ (fst x2), (snd x1) ++ (snd x2))

Evaluating dcombsseqn' = cata dcombsseqnAlg will return the same result given by dcombsseqn.

146

IV.1.2 Exhaustive, incremental cell enumeration based on join-list
We now have all the ingredients to construct our algorithm, which will enumerate all these linear classification
decision hyperplanes and thus solve (126). We will need some basic linear algebra such as real-valued Vector and
Matrix types, solving linear systems linearsolve :: Matrix -> Vector -> Vector and matrix-vector multipli-
cation matvecmult:: Matrix -> Vector -> Vector which are defined in the imported Linearsolve module and
listed in the Appendix for completeness.

Dataset First, the input Dataset is defined

���������
type Label = Int
type Item = (Vector, Label)
type Dataset = [Item]

which is a set of data Items which comprises a tuple of a real-valued Vector data point and its associated integer
training Label, for clarity extracted from the tuple using

���������
label (x,l) = l
point (x,l) = x

Linear classification A linear model is the unique hyperplane parameter of type Vector which goes through a
given set of data points, where the number of data points is equal to the dimension of the space

���������
ones:: Int -> Vector
ones n = take n [1.0,1.0..]

fitw :: Double -> [Vector] -> Vector
fitw sense dx = [-sense] ++ (map (*sense) (linearsolve dx (ones (length (head

dx)))))

Here, dx is a list of vectors of length D, in other words a D ×D matrix, and the function fitw solves a linear
system of equations to obtain the normal vector of the hyperplane in the homogeneous coordinates for all data in dx.
The Haskell function take :: Int -> [a] -> [a] simply truncates a given list to the given number of elements,
and the list comprehension [1.0,1.0..] is the infinite list of +1.0 real values16. The sense parameter, taking on
the values {−1.0,+1.0}, is used to select the orientation of the normal vector. The function head :: [a] -> a
extracts the first element of a list (which must be non-empty); here it is used to find the dimension D of the dataset.

With an (oriented) linear model obtained this way, we can apply it to a set of data points in order to make a
decision function prediction

���������
evalw :: [Vector] -> Vector -> [Double]
evalw dx w = matvecmult (map ([1.0]++) dx) w

which is the oriented distance of all data items in dx to the linear model with normal vector w. Given that
prediction function value, we can obtain the corresponding predicted assignment in {0, 1,−1} (which is zero for
points which lie on the decision boundary and which actually define the boundary):

���������
plabel :: [Double] -> [Label]
plabel = map (round.signum.underflow)

where
smalleps = 1e-8
underflow v = if (abs v) < smalleps then 0 else v

16Haskell is a lazy language, in that terms are only evaluated when required. This allows for the specification of non-terminating
structures like this, which on evaluation will turn out to be finite.

147

The Haskell where keyword is a notational convenience which allows local function and variable definitions that
can access the enclosing, less indented scope. The reason for the underflow correction, is that numerical imprecision
leads to predictions for some points which are not exactly on the boundary, where they should be. The function
round just type casts the label prediction to match the label type (integer). Lastly, combining these two functions
above obtains

���������
pclass :: [Vector] -> Vector -> [Label]
pclass dx w = plabel (evalw dx w)

which, given a set of data points and a hyperplane, obtains the associated labels with respect to that hyperplane.

Loss Next, given a pair of labels, we want to be able to compute the corresponding term in the 0-1 loss. This
makes use of Haskell “case” syntax statements

���������
loss01 :: Label -> Label -> Int
loss01 l1 l2

| l1 == 0 = 0
| l2 == 0 = 0
| l1 /= l2 = 1
| otherwise = 0

This function handles the situation where either label is 0, which occurs for data points which lie on the defining
hyperplane and whose predicted class is always assumed to be the same as training label, and also the default case
(otherwise) to ensure that loss01 is total. Using this, we can compute the 0-1 loss, E0-1 for a given pair of label
lists

e01 :: [Label] -> [Label] -> Integer
e01 x y = sum (map (\(lx,ly) -> loss01 lx ly) (zip x y))

making use of the Haskell function zip :: [a] -> [b] -> [(a,b)] which pairs every element of the first given
list with the corresponding element of the second given list.

Configuration Our recursive combination-sequence SDP requires a partial configuration datatype which is up-
dated by application of the decisions. For computational efficiency, we package up the linear classification hyper-
plane defined by the size-D combination, with the 0-1 loss for its corresponding sequence, which together we define
as the type (classification) Model

���������
type Model = (Vector, Int)

modelw :: Model -> Vector
modelw (w,l) = w

modell :: Model -> Int
modell (w,l) = l

and, combining this with the combination-sequence datatype gives us the SDP configuration Config:

���������
type Config = ([Item], [Item], Maybe Model)

comb :: Config -> [Item]
comb (c,s,m) = c

seqn :: Config -> [Item]
seqn (c,s,m) = s

model :: Config -> Maybe Model
model (c,s,m) = m

148

The first element in this tuple is the combination of data items (with maximum size D) that is used to construct
a linear model, the second element is a sequence of data items which have been encountered so far in the recursion.
Note that here, the value for Model in the configuration is optional. This is indicated by the use of Haskell’s
Maybe datatype, which is roughly equivalent to allowing variables to take None values in Python. Indeed, the initial
configuration has empty combination-sequence pairs, and a Nothing-valued model

���������
empty :: Config
empty = ([], [], Nothing)

The reason for the model pair being optional should be obvious: for combinations of insufficient size, it is not
possible to compute a model or corresponding 0-1 loss.

Algorithms We are now in a position to give the main recursion e01gen, which is defined by a join-list algebra
iveAlg

���������
mergecnfg :: Double -> Int -> Config -> Config -> Config
mergecnfg sense dim c1 c2 = (updcomb ,updseqn , updloss)

where
updcomb = (comb c1) ++ (comb c2)
updseqn = (seqn c1) ++ (seqn c2)
updloss = if (length updcomb == dim) then Just (w, e01 (map label updseqn)

(pclass (map point updseqn) w)) else Nothing
where w = fitw sense (map point updcomb)

iceAlg :: Double -> Int -> Int -> ListAlg Item [Config]
iceAlg sense ub dim = alg

where
alg Nil = [empty]
alg (Single a) = [([],[a], Nothing),([a],[a], Nothing)]
alg (Join x y) = filter (retain) (crp (mergecnfg sense dim) x y)

where
feasible dim = (<= dim) . length . comb
viable ub c = case (model c) of

Nothing -> True
Just (w,l) -> (l <= ub)

retain c = (feasible dim c) && (viable ub c)

e01gen :: Int -> Int -> Dataset -> [Config]
e01gen ub dim xs = (cata (iceAlg 1 ub dim) xs) ++ (cata (iceAlg (-1) ub dim) xs)

Given an orientation parameter sense :: Double, an approximate upper bound on the 0-1 loss ub :: Integer,
and a (non-empty) dataset xs :: Dataset, e01gen outputs a list of candidate solutions to the of type [Config]
which are potential globally optimal solutions to (126), with 0-1 loss no worse than ub. This efficient vertices
generator is derived using all the same principles as the D-sublist-sequence generator introduced above, but addi-
tionally includes updates to the configurations of type Config, and the evaluation of the objective value for each
configuration. The name ivealg stands for “incremental vertices enumeration algebra”, inspired by its nature of
enumerating the vertices of the dual arrangement HD.

In the pattern defined by Join constructor, we merge all partial configurations c1 in x and partial configurations
c2 in y. In this merge operation, updcomb and updseqn are obtained by joining the combination and sequence in
c1 with c2 respectively. Furthermore, a new linear model for the configuration (using fitw) when its combination
reaches size D for the first time. Thus, the Maybe value of the model in the configuration, undergoes a one-way
state transition from undefined (Nothing) to computed (Just m); when computed, the linear boundary hyperplane
remains unchanged and the configuration’s 0-1 loss is updated on each subsequent steps.

Looking at the filtering, the predicate retain is the conjunction of two separate predicates feasible and viable.
The first predicate feasible checks whether the size of the combination is smaller than dim, which is the same as
maxlen predicate introduced before. The predicate viable :: Config -> Bool checks whether a linear hyperplane
model is defined for a configuration, and if so (case Just m), returns True when the 0-1 loss of this configuration

149

is at most equal to the approximate upper bound. Both predicates are segment-closed, the viable predicate is
segment-closed because the 0-1 loss is non-decreasing as more data is scanned by the recursion; this is a very
useful computational efficiency improvement since it can eliminate many non-optimal partial solutions. Since the
conjunction of two segment-closed predicates is also segment-closed, the integration retain :: Config -> Bool
of these two predicates is also segment-closed.

Having generated partial solutions, the next stage is to select an optimal one. This involves a straightforward
recursive iteration through a non-empty list of partial configurations, comparing adjacent configurations remaining
in the list using the fold operator for non-empty lists foldl1 :: (a -> a -> a) -> [a] -> a. The best of the
pair, that is, one with 0-1 loss at most as large as the other, is selected, using function
best :: Config -> Config -> Config. At the same time, configurations with Nothing-valued (undefined) mod-
els are simultaneously removed in the same iteration. We have following sel01opt function, which selects the
configuration with the minimal 0-1 loss:

���������
sel01opt :: [Config] -> Config
sel01opt = foldl1 best

where
best c1 c2 = case (model c1) of

Nothing -> c2
Just (w1,l1) -> case (model c2) of

Nothing -> c1
Just (w2,l2) -> if (l1 <= l2) then c1 else c2

Finally, we can give the program for solving problem (126). It generates all positive and negatively-oriented
decision boundaries (which are viable with respect to the approximate upper bound ub) and selecting an optimal
one:

���������
ice_join ub dim = sel01opt . (e01gen ub dim)

An approximate upper bound may be computed by any reasonably good approximate method, for instance, the
support vector machine (SVM). The tighter this bound, the more partial solutions are removed during iteration of
e01gen which is desirable in order to achieve practical computational performance.

Symmetry fusion In our previous discussion of the linear classification problem, the Symmetry Fusion Thm. 14
states that the 0-1 loss for the negative orientation of a hyperplane can be calculated from the positive orientation
of the same hyperplane. Therefore, we can solve the 0-1 loss linear classification problem by enumerating only the
positive or negative-oriented hyperplanes, rather than both.

As a result, we can save half of the computation by modifying the iveAlg as

���������
iceAlg' :: Int -> Int -> Int -> ListAlg Item [Config]
iceAlg' n ub dim = alg

where
alg Nil = [empty]
alg (Single a) = [([],[a], Nothing),([a],[a], Nothing)]
alg (Join x y) = filter (retain) (crp (mergecnfg ' dim) x y)

where
feasible dim = (<= dim) . length . comb
viable ub c = case (model c) of

Nothing -> True
Just (w,l) -> (l <= ub) || (l >= n - dim - ub)

retain c = (feasible dim c) && (viable ub c)

mergecnfg ' :: Int -> Config -> Config -> Config
mergecnfg ' dim c1 c2 = (updcomb ,updseqn , updloss)

where
updcomb = (comb c1) ++ (comb c2)
updseqn = (seqn c1) ++ (seqn c2)

150

updloss = if (length updcomb == dim) then Just (w, e01 (map label updseqn)
(pclass (map point updseqn) w)) else Nothing

where w = fitw (1) (map point updcomb)

The above program discards the use of the sense parameter to generate hyperplanes of negative orientation.
Since both positive and negative orientations correspond to the same hyperplane, and the 0-1 loss of the negative
oriented hyperplane can be obtained by calculating negl = n - dim -l, where n is the data size and l is the
0-1 loss of the positive hyperplane. Similarly, if negl is greater than the upper bound ub, it can be discarded.
Thus, the predicate for testing the negative hyperplane can be defined as negl <= ub which is equivalent to
n - dim - ub <= l.

Therefore, the new generator for the 0-1 loss linear classification problem can be defined as

���������
e01gen' ub dim xs = cata (iceAlg' (length xs) ub dim) xs

Similarly, the selector should also be modified as

���������
sel01opt' :: Int -> [Config] -> Config
sel01opt' dim = foldl1 best

where
best c1 c2 = case (model c1) of

Nothing -> c2
Just (w1,l1) -> case (model c2) of

Nothing -> c1
Just (w2,l2) -> if (l1 <= l2) && (l1 <= n - dim - l2) then c1 else c2

Finally, the 0-1 loss linear classification problem can be solved efficiently by running

���������
ice_join' ub dim = sel01opt' dim . (e01gen' ub dim)

IV.1.3 Empirical analysis
In this section, we analyze the computational performance of our novel ICE algorithm on both synthetic and real-
world data sets. Our evaluation aims to test the following predictions: (a) the ICE algorithm always obtains the best
0-1 loss (classification error) among other algorithms (hence obtains optimal prediction accuracy); (b) wall-clock
run-time matches the worst-case time complexity analysis, and (c) viability filtering using the approximate upper
bound leads to polynomial decrease in wall-clock run-time.17

IV.1.3.1 Real-world data set classification performance

Various linear classification algorithms were applied to classification data sets from the UCI machine learning repos-
itory [Dua and Graff, 2019]. We compare our exact algorithm ICE, against approximate algorithms: support vector
machine (SVM), logistic regression (LR) and linear discriminant analysis (LDA). As predicted (Table 4), the ICE
algorithm always finds solutions with smaller 0-1 loss than approximate algorithms (except for the Inflammations
data set which is linearly separable).

IV.1.3.2 Out-of-sample generalization tests

In this section, we test this prediction by analyzing the performance of the proposed algorithm using cross-validation
(see Table 5), where the out-of-sample predictions use the maximum margin representative of the equivalence class
of the exact hyperplane [Vapnik, 1999].

IV.1.3.3 Run-time complexity analysis

In the worst case situation, ub ≥ N/2, viability filtering with the approximate global upper bound will do nothing
because every combinatorial configuration will be feasible (if a model’s objective function value E0−1 ≥ N/2, we
can get its negative part by reversing the direction of the normal vector; the resulting model will have the 0-1 loss

17For practical purposes, all our results are obtained using a direct, efficient C++ translation of the Haskell code given in this paper.

151

UCI dataset N D Incremental cell
enumeration
(ICE) (ours)

Support vector
machine (SVM)

Logistic
regression

(LR)

Linear
discriminant

analysis
(LDA)

Habermans 306 3 21.6% (66) 24.8% (76) 23.9% (73) 25.2% (77)
Caesarian 80 5 22.5% (18) 27.5% (22) 27.5% (22) 27.5% (22)

Cryotherapy 90 6 4.4% (4) 8.9% (8) 4.4% (4) 10.0% (9)
Voicepath 704 2 2.7% (19) 3.3% (23) 3.4% (24) 3.4% (24)

Inflammations 120 6 0.0% (0) 0.0% (0) 0.0% (0) 0.0% (0)

Table 4: Empirical comparison of the classification error performance (smaller is better), Ê0-1, of our novel incre-
mental cell enumeration (ICE) algorithm, against approximate methods (support vector machine, logistic regression,
Fisher’s linear discriminant) on real-world datasets from the UCI machine learning repository [Dua and Graff, 2019].
Misclassification rates are given as classification error percentage, Ê0-1/N% and number of classification errors, Ê0-1
(in brackets). Best performing algorithm is marked bold. As predicted, ICE, being exact, outperforms all other
non-exact algorithms.

UCI dataset ICE
train
(%)

ICE
test
(%)

SVM
train
(%)

SVM
test
(%)

LR
train
(%)

LR
test
(%)

LDA
train
(%)

LDA
test
(%)

Habermans 21.5
(0.6)

23.8
(6.8)

24.8
(0.6)

25.8
(5.7)

24.9
(1.2)

26.4
(6.8)

25.0
(1.0)

27.1
(6.0)

Caesarian 16.4
(1.4)

37.5
(16.8)

30.3
(4.9)

42.5
(13.9)

27.9
(3.7)

43.8
(15.1)

29.6
(2.8)

43.8
(15.1)

Cryotherapy 4.4
(0.6)

9.0
(10.5)

7.8
(1.7)

17.8
(10.1)

4.4
(0.6)

9.0
(9.2)

10
(1.7)

16.7
(9.0)

Voicepath 2.7
(0.2)

3.7
(1.4)

3.3
(0.2)

4.0
(1.7)

3.4
(0.2)

3.7
(1.3)

3.3
(0.3)

3.9
(1.1)

Inflammations 0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

0.0
(0.0)

Table 5: Ten-fold cross-validation out-of-sample tests on UCI data set of our novel incremental cell enumeration (ICE)
algorithm, against approximate methods (support vector machine, SVM; logistic regression, LR; linear discriminant
analysis, LDA). Mean classification error (smaller is better) percentage Ê0-1/N% is given (standard deviation in
brackets), for the training and test sets. Best performing algorithm is marked bold. As predicted, ICE always obtains
better solutions on average on out-of-sample datasets than other, non-exact algorithms.

152

Figure IV.1.1: Log-log wall-clock run time (seconds) for the ICE algorithm in 1D to 4D synthetic datasets, against
dataset size N , where the approximate upper bound is disabled (by setting it to N). The run-time curves from left
to right (corresponding to D = 1, 2, 3, 4 respectively), have slopes 2.0, 3.1, 4.1, and 4.9, a very good match to the
predicted worst-case run-time complexity of O

(
N2

)
, O

(
N3

)
, O

(
N4

)
, and O

(
N5

)
respectively.

smaller than N/2, both models represented by the same hyperplane). Therefore, all O
(
ND

)
configurations will be

enumerated for all N dataset items. In each iteration, a configuration takes constant time to update its 0-1 loss,
followed by O (N) time required to calculate the complete 0-1 loss of a configuration. Hence, the ICE algorithm
will have O

(
ND+1

)
in the worst case.

We test the wall clock time of our novel ICE algorithm on four different synthetic data sets with dimension
ranging from 1D to 4D. The 1D-dimensional data set has data size ranging from N = 1000 to 60000, the 2D-
dimensional ranges from 150 to 2400, 3D-dimensional from 50 to 500, and 4D-dimensional data ranging from 30 to
200. The worst-case predictions are well-matched empirically (see Fig. IV.1.1).

Viability filtering using the approximate global upper bound ub is a powerful technique which can substantially
speed up our algorithm Next, we will evaluate the effectiveness of the upper bound (see Fig. IV.1.2). We generate
five synthetic datasets with dimension ranging from D = 1 to D = 4, and varying ub from Ê0-1 to N . The synthetic
datasets are chosen such that they all have optimal 0-1 loss E∗

0-1 approximately equal to 0.1N and 0.2N . Fig.
IV.1.2 shows polynomial degree decrease in run time as ub is decreased from N/2 to E∗

0-1, and it remains stable
when ub ≥ N/2 because then all configurations are viable.

All decision boundaries computed by exact algorithms entail the same, globally optimal 0-1 loss. Therefore, the
only meaningful comparison between ICE and any other exact algorithms is in terms of time complexity. Here, we
compare the wall-clock run time of our ICE algorithm with the exact branch-and-bound (BnB) algorithm of Nguyen
and Sanner [2013]. As a branch-and-bound algorithm, in the worst case it must test all possible assignments of
data points to labels which requires an exponential number of computations, by comparison to ICE’s worst case
polynomial time complexity arising from the enumeration of dichotomies instead. Empirical computations confirm
this reasoning (see Fig. IV.1.3), predicting for instance that for the N = 150 data size with D = 3, ICE would take
1.2 seconds worst-case whereas BnB would take approximately 1010 seconds (nearly 317 years), demonstrating the
clear superiority of our approach. Similar findings would be expected to hold for other implementations such as the
use of generic MIP solvers such as GLPK.

153

Figure IV.1.2: Log-log wall-clock run time (seconds) of the ICE algorithm on synthetic data, as the approximate
upper bound viability is varied, E∗

0-1 ≤ ub ≤ N , for E∗
0-1 approximately 0.1N (left), and approximately 0.2N (right).

It can be seen that the empirical run-time decreases polynomially as ub tends towards the exact E∗
0-1 of the dataset.

Figure IV.1.3: Log-linear wall-clock run time (seconds) plot comparing the ICE algorithm against the branch-and-
bound (BnB) algorithm of Nguyen and Sanner [2013] (MATLAB implementation provided by the authors) on three
dimensional synthetic data. On this log-linear scale exponential run time appears as a linear function of problem
size N , whereas, polynomial run time is a logarithmic function of N . Fitting appropriate models (lines) to the
computational experiment data (dots) provides clear evidence of this prediction.

154

IV.2 Exact K-medoids algorithm
The K-medoids problem has a similar combinatorics to the 0-1 loss linear classification problem.

IV.2.1 Exhaustive, K-medoids enumeration based on join-list
Dataset For the unsupervised learning problem, the input Dataset is defined as

���������
type Item = Vector
type Dataset = [Item]

which is a set of Items.

Squared distance evaluation As we have discussed, the K-medoids problem is defined over arbitrary objective
function, the most common choice is the squared Euclidean distance function d2 (x,µ) = ‖x− µ‖22. In Haskell, the
squared distance between a pair of data points can be defined as

���������
sqrdist :: Item -> Item -> Double
sqrdist a b = sum $ map (^2) $ zipWith (-) a b

the zipWith (-) function uses every element of a minus the corresponding element of the second list b, then each
elements in the resulting list are squared by map (^2) function, and finally the results are summed together by sum
function. The sqrdist function takes O (D) time to evaluate the distance of two data items in RD. In practice, the
distance for each pair of data points can be pre-calculated and stored in a distance matrix. These require evaluating
N2 pairs of distance and evaluating the distance for a pair of points requires O (D) complexity. Thus the overall
complexity for calculating the distance matrix is O

(
N2
)
. Once we compute the distance matrix in advance, the

sum-of-squared error (SSE) for each set of centroids can be obtained by indexing, which requires only O (N) time.
Thus evaluating the SSE for each K-combination is independent of dimension.

Configuration and assignment Analogue to the 0-1 loss linear classification problem, the SSE of a configuration
is just a floating point type SSE = Double, and we define Maybe SSE to represent the existence of the SSE in a
particular configuration. Combining this with the combination-sequence datatype, we define the configuration
datatype as follows

���������
type Config = ([Item], [Item], Maybe SSE)

comb :: Config-> [Item]
comb(c,i,s) = c

seqn :: Config -> [Item]
seqn(c,i,s) = i

sse :: Config -> Maybe SSE
sse(c,i,s) = s

We refer to the prediction labels of a given set of centroids as assignment, which is just a sequence of Ints
(labels), defined as

���������
type Assignment = [Int]

Updating objective function value Given a set of medoids ms :: [Item] and a sequence of data item
xs :: [Item], the SSE of ms with respect to data sequence xs can be calculated by function

���������
updsse :: [Item] -> [Item] -> SSE

155

updsse xs ms = sum $ map sum[[sqrdist x (ms!!j) | (x,i) <- zip xs asgn, i == j]
| j <- [0..((length ms)-1)]]

where asgn = getasgn xs ms

The updsse function first generates the assignment asgn of medoids ms with respect to xs, then each data item x
in sequence xs is paired with its corresponding assignment in asgn. The squared distance of x to its corresponding
centroids ms!!j is calculated by sqrdist. Finally, the SSE of each cluster is obtained by the map sum function,
and the total SSE is obtained by summing the SSE of each cluster.

The assignment of medoids ms with respect to xs is generated by the getasgn function, which is defined as
���������
getasgn :: [Item] -> [Item] -> Assignment
getasgn xs ms = map argmin listdists

where listdists = [map (sqrdist x) ms | x <- xs]

argmin :: [Double] -> Int
argmin dists = fst $ minimumBy (comparing snd) (zip [0,1..] dists)

the listdist calculate the distances of each data point x to all medoids ms and then the map argmin function
outputs the indexes of the medoids that have the minimal distances to each data point x in xs.

Algorithm We are now ready to define the join-list algebra for solving the K-medoids problem
���������

kmedAlg :: (Config -> Bool) -> Int -> ListAlg Item [Config]
kmedAlg p k = alg where

alg Nil = [([],[], Nothing)]
alg (Single a) = [([],[a], Nothing),([a],[a], Nothing)]
alg (Join x y) = filter p (cpp (mergecnfg k) x y)

mergecnfg :: Int -> Config -> Config -> Config
mergecnfg k x1 x2 = (updcomb ,updseqn , upd)

where
updcomb = (comb x1) ++ (comb x2)
updseqn = (seqn x1) ++ (seqn x2)
upd = if (length updcomb == k) then (Just (updsse (updseqn) (updcomb))) else Nothing

In this case, instead of defining the fused algebra directly, we now provide a more generic form of filter-fused
algebra. Any segment-closed predicate p can be fused into kmedAlg. For instance, we can define the following
filter-fused algebra with a segment-closed predicate, consisting of the conjunction of three predicates

���������
kmedFiltAlg nmin ub k = kmedAlg (retain nmin ub k) k

where
retain nmin ub k c = (clustSize k c) && (viable ub c) && (minData nmin c)
viable ub c = case (sse c) of

Nothing -> True
Just e -> (e <= ub)

clustSize k = (<= k) . length . comb

in addition to the viable test and feasible test that we used in the 0-1 loss linear classification problem, we
introduce an additional segment-closed predicate, minData. This predicate checks whether the number of data
items in each cluster is greater than nmin. We can define minData as following

���������
minData :: Int -> Config -> Bool
minData nmin c
| (length (comb c) == 0) = True
| otherwise = lstElem (countData (length (comb c)) (getasgn (seqn c) (comb c))) <= nmin

lstElem :: [Int] -> Int

156

lstElem x = minlist (<=) x

countData :: Int -> Assignment -> [Int]
countData k asgn = [count i asgn | i <- [0..(k-1)]]

where count i = length . filter (== i)

where counData counts the number of data items in each cluster based on the assignment with respect to the
medoids comb c, then function lstElem finds the smallest cluster size. If this smallest cluster size is greater
than the constrained size nmin then all other clusters will also have a size greater than nmin. This predicate is
segment-closed because, as we introduce new medoids, the number of data items in each cluster can only decrease.

The selector for the K-medoids problem can be defined as

���������
selsse :: [Config] -> Config
selsse = foldl1 best

where
best c1 c2 = case (sse c1) of

Nothing -> c2
Just e1 -> case (sse c2) of

Nothing -> c1
Just e2 -> if (e1 <= e2)then c1 else c2

Finally, the K-medoids problem with the additional cluster size constraint can be solved efficiently by running:

���������
kmed_filt nmin ub k = selsse . cata (kmedFiltAlg nmin ub k)

IV.2.2 Empirical analysis
In this section, we analyze the computational performance of our algorithm EKM on both synthetic and real-world
data sets. Our evaluation aims to test the following predictions: (a) EKM always obtains the best objective value18;
(b) wall-clock run-time matches the worst-case polynomial time complexity analysis; (c) modern off-the-shelf MIP
solvers (GLPK) for the same problem will have exponential time complexity. In our implementation, the matrix
operations required at every recursive step are batch processed on a single GPU. We executed all the experiments
on an Intel Core i9 CPU, with 24 cores, 2.4-6 GHz, 32 GB RAM and GeForce RTX 4060 Ti GPU.

IV.2.2.1 Performance on real-world datasets

We test the performance of our EKM algorithm against the approximate algorithms partition around medoids
(PAM), Faster-PAM and Clustering Large Applications based on RANdomized Search (CLARANS)19 on 18 datasets
from the UCI Machine Learning Repository, two open-source datasets from

[Wang et al., 2022, Padberg and Rinaldi, 1991, Ren et al., 2022], and two synthetic datasets. We show that, as
expected, no other algorithms can achieve better objective function values (see Table 6).

To compare EKM’s performance against the BnB algorithm proposed by Ren et al. [2022], we processed most of
the real-world datasets tested therein. We discovered through our experiments that all these datasets (except IRIS)
can be solved exactly using either the PAM or Faster-PAM algorithms, this indeed provides an extremely tight
upper bound in the analysis of Ren et al. [2022]. Additionally, our experiments included real-world datasets with a
maximum size of N = 5, 000. To the best of our knowledge, the largest dataset for which an exact solution has been
previously obtained is N = 150, as documented by Ceselli and Righini [2005] with K = 3. Existing literature on
the K-medoids problem has only reported exact solutions on very small datasets, primarily due to the use of BnB
algorithms. Given their unpredictable run-time and worst-case exponential time complexity, most reported usage
of BnB algorithms impose a hard computational time limit to avoid memory overflow or intractable run times.

IV.2.2.2 Time complexity analysis for serial implementation

We test the wall-clock time of our novel EKM algorithm on a synthetic dataset with cluster sizes ranging from
K = 2 to 5. When K = 2, the data size N ranges from 150 to 2,500, K = 3 ranges from 50 to 530, K = 4 ranges

18The squares Euclidean distance function was chosen for the experiments, any other proper metrics could also be used.
19We set the maximum number of neighbors examined as 4, and the number of iteration as 5.

157

UCI dataset N D EKM (ours) PAM Faster-PAM CLARANS
LM 338 3 3.96 × 101

(6.82)
3.99× 101

(4.02× 10−3)
4.07× 101

(3.01× 10−3)
5.33× 101

(6.14)
UKM 403 5 8.36 × 101

(1.21× 101)
8.44× 101

(8.57× 10−3)
8.40× 101

(3.21× 10−3)
1.16× 102

(4.98× 101)
LD 345 5 3.31 × 105

(6.98)
3.56× 105

(4.11× 10−3)
3.31 × 105

(3.87× 10−3)
4.68× 105

(3.40)
Energy 768 8 2.20 × 106

(1.01× 102)
2.28× 106

(6.95× 10−3)
2.28× 106

(3.94× 10−3)
2.97× 106

(2.71)
VC 310 6 3.13 × 105

(4.98)
3.13 × 105

(3.15× 10−3)
3.58× 105

(5.36× 10−3)
5.27× 105

(2.58)
Wine 178 13 2.39 × 106

(1.11)
2.39 × 106

(1.06× 10−3)
2.63× 106

(2.34× 10−3)
6.86× 106

(5.56× 10−1)
Yeast 1484 8 8.37 × 101

(1.10× 103)
8.42× 101

(9.54× 10−2)
8.42× 101

(6.08× 10−2)
1.05× 102

(1.73× 102)
IC 3150 13 6.9063 × 109

(2.46× 104)
6.9105× 109

(8.68× 10−1)
6.9063 × 109

(1.91× 10−1)
1.44× 1010

(2.70× 101)
WDG 5000 21 1.67 × 105

(2.49× 105)
1.67 × 105

(1.34)
1.67 × 105

(1.97× 10−1)
2.77× 105

(5.32× 103)
IRIS 150 4 8.40 × 101

(7.32× 10−1)
8.45× 101

(2.51× 10−3)
8.45× 101

(1.03× 10−3)
1.57× 102

(2.32× 10−1)
SEEDS 210 7 5.98 × 102

(1.71)
5.98 × 102

(1.14× 10−3)
5.98 × 102

(3.59× 10−3)
1.12× 103

(7.82× 10−1)
GLASS 214 9 6.29 × 102

(1.81)
6.29 × 102

(1.01× 10−3)
6.29 × 102

(1.62× 10−3)
1.04× 103

(2.27)
BM 249 6 8.63 × 105

(2.64)
8.76× 105

(4.12× 10−3)
8.63 × 105

(1.61× 10−3)
1.33× 106

(1.02× 101)
HF 299 12 7.83 × 1011

(4.57)
7.83 × 1011

(1.00× 10−3)
7.83 × 1011

(4.87× 10−3)
1.88× 1012

(6.55× 10−1)
WHO 440 7 8.33 × 1010

(1.67× 101)
8.33 × 1010

(5.62× 10−3)
8.33 × 1010

(2.81× 10−3)
1.21× 1011

(8.12)
ABS 740 19 2.32 × 106

(1.04× 102)
2.32 × 106

(2.11× 10−2)
2.38× 106

(5.00× 10−3)
2.96× 106

(7.80× 101)
TR 980 10 1.13 × 103

(2.16× 102)
1.13 × 103

(5.14× 10−2)
1.13 × 103

(1.14× 10−2)
1.38× 103

(2.59× 102)
SGC 1000 21 1.28 × 109

(2.20× 102)
1.28 × 109

(1.71× 10−1)
1.28 × 109

(4.22× 10−2)
2.52× 109

(2.24)
HEMI 1995 7 9.91 × 106

(3.06× 103)
9.91 × 106

(3.64× 10−1)
9.91 × 106

(6.99× 10−2)
1.66× 107

(9.53)
PR2392 2392 2 2.13 × 1010

(1.38× 104)
2.13 × 1010

(3.66× 10−1)
2.13 × 1010

(8.38× 10−2)
3.47× 1010

(1.15× 102)

Table 6: Empirical comparison of our novel exact K-medoids algorithm, EKM, against widely-used approximate
algorithms (PAM, Fast-PAM, and CLARANS) for K = 3, in terms of sum-of-squared errors (E), smaller is better.
Best performing algorithm marked bold. Wall clock execution time in brackets (seconds). Datasets are from the UCI
repository.

158

Figure IV.2.1: Log-log wall-clock run time (seconds) for our algorithm (EKM) tested on synthetic datasets (left
panel). The run-time curves from left to right (corresponding to K = 2, 3, 4, 5 respectively), have slopes 3.005, 4.006,
5.018, and 5.995, an excellent match to the predicted worst-case run-time complexity of O

(
N3

)
, O

(
N4

)
, O

(
N5

)
,

and O
(
N6

)
respectively. Log-linear wall-clock run-time (seconds) comparing EKM algorithm against a classical MIP

(BnB) solver (GLPK) on synthetic datasets with K = 3 (right panel). On this log-linear scale, exponential run-time
appears as a linear function of problem size N , whereas polynomial run-time is a logarithmic function of N .

from 25 to 160, and K = 5 ranges from 30 to 200. The worst-case predictions are well-matched empirically (Fig.
IV.2.1, left panel). As predicted, the off-the-shelf BnB-based MIP solver (GLPK) exhibits worst-case exponential
time complexity (Fig. IV.2.1, right panel).

IV.3 Discussion
In this chapter, we introduce two polynomial-time algorithms for solving the 0-1 loss classification problem and the
K-medoids problem. Our empirical analysis demonstrates that these two exact algorithms outperform approximate
methods on various UCI datasets, and the predicted worst-case complexity matches the observed empirical time
complexity. While our algorithms are embarrassingly parallelizable, our current implementation only executes the
incremental version.

Both algorithms are based on the combination (sublist) generator we previously introduced. As noted, the
consequence of using the combination generator is that the evaluator is only partially fusable with the generator,
which significantly restricts the effectiveness of the global upper bound techinique in such cases. As illustrated in
Fig. IV.1.2, even in the best-case case, the use of the global upper bound achieves only a modest magnitude of
speed-up. Consequently, we adopted an alternative evaluation strategy for the EKM algorithm, as discussed in III.6,
which directly evaluate objective of a configuration with respect to all input data sequence instead of incrementally
evaluating it.

Besides presenting two novel algorithms, we aim to prompt researchers to reconsider the metric for assessing the
efficiency of exact algorithms to account for subtleties beyond simple problem scale. In discussing the “goodness”
of exact algorithms for ML, it is critical to recognize that focusing solely on the scalability of these algorithms—for
instance, their capacity to handle large datasets—does not provide a comprehensive assessment of their utility. This
inclination to prioritize scalability when assessing exact algorithms arises from the perceived intractable combina-
torics of many ML problems. However, for many ML problems, the problems specified for proving NP-hardness
are not the same as their original definitions used in practical ML application. If a polynomial-time algorithm
does exist for these seemingly intractable problems, overemphasizing scalability can mislead scientific development,
diverting attention from important measures such as memory usage, worst-case time complexity, and the practical
applicability of the algorithm in real-world scenarios.

Therefore, judging an algorithm implementation solely by the scale of the dataset it can process is not an adequate
measure of its effectiveness. Indeed, for large datasets, the use of exact algorithm may often be unnecessary as
many high-quality approximate algorithms provide very good results, supported by solid theoretical assurances. If
the clustering model closely aligns with the ground truth, the discrepancy between approximate and exact solutions
should not be significant, provided the dataset is sufficiently large. For the study of the K-medoids problem,
while algorithms presented in [Ren et al., 2022, Ceselli and Righini, 2005, Elloumi, 2010] are exact in principle,

159

experiments reported by the authors do not demonstrate the actual computation of exact solutions, nor do they
provide any theoretical guarantee on the computational time required to achieve satisfactory approximate solutions.
If the application of the problem is concerned with only the approximate solution, it may be more beneficial to
concentrate on developing more efficient or more robust heuristic algorithms. This could potentially offer more
practical value in scenarios where approximate solutions are adequate.

References
Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. Learning optimal and fair decision trees for non-

discriminative decision-making. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1418–1426, 2019.

Sina Aghaei, Andrés Gómez, and Phebe Vayanos. Strong optimal classification trees. ArXiv preprint
ArXiv:2103.15965, 2021.

Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using caching branch-and-bound
search. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 3146–3153, 2020.

Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Pydl8. 5: a library for learning optimal decision trees. In Proceed-
ings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence,
pages 5222–5224, 2021.

Srinivas M Aji and Robert J McEliece. The generalized distributive law. IEEE transactions on Information Theory,
46(2):325–343, 2000.

Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean sum-of-squares clus-
tering. Machine learning, 75:245–248, 2009.

Elaine Angelino, Nicholas Larus-Stone, Daniel Alabi, Margo Seltzer, and Cynthia Rudin. Learning certifiably
optimal rule lists for categorical data. Journal of Machine Learning Research, 18(234):1–78, 2018.

Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit Mukherjee. Understanding deep neural networks with
rectified linear units. ArXiv preprint ArXiv:1611.01491, 2016.

Florent Avellaneda. Efficient inference of optimal decision trees. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3195–3202, 2020.

David Avis and Komei Fukuda. Reverse search for enumeration. Discrete applied mathematics, 65(1-3):21–46, 1996.

Egon Balas and Paolo Toth. Branch and bound methods for the traveling salesman problem. 1983.

Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, Joydeep Ghosh, and John Lafferty. Clustering with bregman
divergences. Journal of Machine Learning Research, 6(10), 2005.

Rodrigo C Barros, Ricardo Cerri, Pablo A Jaskowiak, and André CPLF De Carvalho. A bottom-up oblique decision
tree induction algorithm. In 11th International Conference on Intelligent Systems Design and Applications, pages
450–456. IEEE, 2011.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension and pseu-
dodimension bounds for piecewise linear neural networks. Journal of Machine Learning Research, 20(63):1–17,
2019.

Saugata Basu, Richard Pollack, and MF Roy. A new algorithm to find a point in every cell de ned by a family of
polynomials. 1995.

Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? risk bounds for classification and
regression rules that interpolate. Advances in Neural Information Processing Systems, 31, 2018.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and
the classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854,
2019a.

160

Mikhail Belkin, Alexander Rakhlin, and Alexandre B Tsybakov. Does data interpolation contradict statistical
optimality? In The 22nd International Conference on Artificial Intelligence and Statistics, pages 1611–1619.
PMLR, 2019b.

Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6):
503–515, 1954.

Richard Bellman. Eye of the Hurricane. World Scientific, 1984.

Kristin P Bennett. Decision tree construction via linear programming. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 1992.

Kristin P Bennett and Jennifer A Blue. Optimal decision trees. Rensselaer Polytechnic Institute Math Report, 214
(24):128, 1996.

Daniel Bertschinger, Christoph Hertrich, Paul Jungeblut, Tillmann Miltzow, and Simon Weber. Training fully
connected neural networks is� r-complete. ArXiv preprint ArXiv.2204.01368, 10, 2022.

Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning, 106:1039–1082, 2017.

Dimitris Bertsimas, Jean Pauphilet, and Bart Van Parys. Sparse regression. Statistical Science, 35(4):555–578,
2020.

Richard Bird and Oege De Moor. The algebra of programming. NATO ASI DPD, 152:167–203, 1996.

Richard Bird and Jeremy Gibbons. Algorithm Design with Haskell. Cambridge University Press, 2020.

Richard S Bird. An introduction to the theory of lists. In Logic of Programming and Calculi of Discrete Design:
International Summer School directed by FL Bauer, M. Broy, EW Dijkstra, CAR Hoare, pages 5–42. Springer,
1987.

Richard S Bird. Lectures on constructive functional programming. In Constructive Methods in Computing Science:
International Summer School directed by FL Bauer, M. Broy, EW Dijkstra, CAR Hoare, pages 151–217. Springer,
1989.

Richard S. Bird. Zippy tabulations of recursive functions. In Philippe Audebaud and Christine Paulin-Mohring, ed-
itors, Mathematics of Program Construction, pages 92–109, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
ISBN 978-3-540-70594-9.

Richard S. Bird and Philip L. Wadler. An Introduction to Functional Programming. Prentice-Hall, 1988.

Christopher M Bishop. Pattern recognition and machine learning. Springer Google Schola, 2:1122–1128, 2006.

Anders Björner. Oriented matroids. Number 46. Cambridge University Press, 1999.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learnability and the vapnik-
chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge Un0iversity Press, 2004.

L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and Regression Trees. Taylor & Francis, 1984.
ISBN 9780412048418. URL https://books.google.co.uk/books?id=JwQx-WOmSyQC.

Leo Breiman. Random forests. Machine learning, 45:5–32, 2001a.

Leo Breiman. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Statistical
science, 16(3):199–231, 2001b.

J Paul Brooks. Support vector machines with the ramp loss and the hard margin loss. Operations Research, 59(2):
467–479, 2011.

Alexander Bunkenburg. The boom hierarchy. In Functional Programming, Glasgow 1993: Proceedings of the 1993
Glasgow Workshop on Functional Programming, Ayr, Scotland, 5–7 July 1993, pages 1–8. Springer, 1994.

161

https://books.google.co.uk/books?id=JwQx-WOmSyQC

Yuliang Cai, Huaguang Zhang, Qiang He, and Jie Duan. A novel framework of fuzzy oblique decision tree construc-
tion for pattern classification. Applied Intelligence, 50:2959–2975, 2020.

Venanzio Capretta, Tarmo Uustalu, and Varmo Vene. Recursive coalgebras from comonads. Information and
Computation, 204(4):437–468, 2006.

Emilio Carrizosa, Amaya Nogales-Gómez, and Dolores Romero Morales. Strongly agree or strongly disagree?:
Rating features in support vector machines. Information Sciences, 329:256–273, 2016.

Bob F Caviness and Jeremy R Johnson. Quantifier elimination and cylindrical algebraic decomposition. Springer
Science & Business Media, 2012.

Alberto Ceselli and Giovanni Righini. A branch-and-price algorithm for the capacitated p-median problem. Net-
works: An International Journal, 45(3):125–142, 2005.

Yann Chevaleyre, Frédéerick Koriche, and Jean-Daniel Zucker. Rounding methods for discrete linear classification.
In International Conference on Machine Learning, pages 651–659. Proceedings of Machine Learning Research,
2013.

Nicos Christofides and John E Beasley. A tree search algorithm for the p-median problem. European Journal of
Operational Research, 10(2):196–204, 1982.

Nicos Christofides, Aristide Mingozzi, and Paolo Toth. Exact algorithms for the vehicle routing problem, based on
spanning tree and shortest path relaxations. Mathematical Programming, 20:255–282, 1981.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to algorithms. MIT
press, 2022.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20(3):273–297, 1995.

Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern
recognition. IEEE Transactions on Electronic Computers, (3):326–334, 1965.

David Cox, John Little, Donal O’shea, and Moss Sweedler. Ideals, varieties, and algorithms, volume 3. Springer,
1997.

David R Cox. The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B
(Methodological), 20(2):215–232, 1958.

David Roxbee Cox. Some procedures connected with the logistic qualitative response curve. Research Papers in
Statistics, pages 55–71, 1966.

George B Dantzig. Linear programming and extensions. In Linear programming and extensions. Princeton university
press, 2016.

Constantinos Daskalakis, Richard M Karp, Elchanan Mossel, Samantha J Riesenfeld, and Elad Verbin. Sorting and
selection in posets. SIAM Journal on Computing, 40(3):597–622, 2011.

Oege De Moor. Categories, relations and dynamic programming. Mathematical Structures in Computer Science, 4
(1):33–69, 1994.

Oege De Moor. A generic program for sequential decision processes. In International Symposium on Programming
Language Implementation and Logic Programming, pages 1–23. Springer, 1995.

George Diehr. Evaluation of a branch and bound algorithm for clustering. SIAM Journal on Scientific and Statistical
Computing, 6(2):268–284, 1985.

Olivier Du Merle, Pierre Hansen, Brigitte Jaumard, and Nenad Mladenovic. An interior point algorithm for
minimum sum-of-squares clustering. SIAM Journal on Scientific Computing, 21(4):1485–1505, 1999.

D. Dua and C. Graff. UCI Machine learning repository, 2019. URL http://archive.ics.uci.edu/.

Jack William Dunn. Optimal trees for prediction and prescription. PhD thesis, MIT, 2018.

162

http://archive.ics.uci.edu/

Herbert Edelsbrunner. Algorithms in combinatorial geometry, volume 10. Springer Science & Business Media, 1987.

Samuel Eilenberg and Jesse B Wright. Automata in general algebras. Information and Control, 11(4):452–470,
1967.

Sourour Elloumi. A tighter formulation of the p-median problem. Journal of Combinatorial Optimization, 19(1):
69–83, 2010.

Kento Emoto, Sebastian Fischer, and Zhenjiang Hu. Filter-embedding semiring fusion for programming with
mapreduce. Formal Aspects of Computing, 24:623–645, 2012.

David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F Italiano. Sparse dynamic programming i: linear
cost functions. Journal of the ACM, 39(3):519–545, 1992.

Hatem A Fayed and Amir F Atiya. A mixed breadth-depth first strategy for the branch and bound tree of euclidean
k-center problems. Computational Optimization and Applications, 54:675–703, 2013.

J-A Ferrez, Komei Fukuda, and Th M Liebling. Solving the fixed rank convex quadratic maximization in binary
variables by a parallel zonotope construction algorithm. European Journal of Operational Research, 166(1):35–50,
2005.

Maarten M Fokkinga. An exercise in transformational programming: backtracking and branch-and-bound. Science
of Computer Programming, 16(1):19–48, 1991.

Maarten M Fokkinga. Law and order in algorithmics. Citeseer, 1992.

Komei Fukuda. Lecture: Polyhedral computation, spring 2016. Institute for Operations Research and
Institute of Theoretical Computer Science, ETH Zurich. https://inf. ethz. ch/personal/fukudak/lect/pclec-
t/notes2015/PolyComp2015. pdf, 2016.

Zvi Galil and Raffaele Giancarlo. Speeding up dynamic programming with applications to molecular biology.
Theoretical Computer Science, 64(1):107–118, 1989.

Thomas Gerstner and Markus Holtz. Algorithms for the cell enumeration and orthant decomposition of hyperplane
arrangements. 2006.

Surbhi Goel, Adam Klivans, Pasin Manurangsi, and Daniel Reichman. Tight hardness results for training depth-2
relu networks. ArXiv preprint ArXiv:2011.13550, 2020.

John C Gower and Pierre Legendre. Metric and euclidean properties of dissimilarity coefficients. Journal of
classification, 3:5–48, 1986.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep learning
on typical tabular data? Advances in Neural Information Processing Systems, 35:507–520, 2022.

Martin Grötschel and Yoshiko Wakabayashi. A cutting plane algorithm for a clustering problem. Mathematical
Programming, 45(1):59–96, 1989.

Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt Menickelly, and Katya Scheinberg. Optimal decision trees
for categorical data via integer programming. Journal of Global Optimization, 81:233–260, 2021.

LLC Gurobi Optimization. Gurobi optimizer reference manual. 2021.

Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media, 2013.

Susumu Hasegawa, H Imai, M Inaba, N Katoh, and J Nakano. Efficient algorithms for variance-based k-clustering.
In Proceedings of the First Pacific Conference on Computer Graphics and Applications, World Scientific, pages
75–89. Citeseer, 1993.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The elements of statistical learning:
data mining, inference, and prediction, volume 2. Springer, 2009.

Xi He and Max A Little. An efficient, provably exact algorithm for the 0-1 loss linear classification problem. ArXiv
preprint ArXiv:2306.12344, 2023.

163

Xi He and Max A Little. Ekm: an exact, polynomial-time algorithm for the k-medoids problem. ArXiv preprint
ArXiv:2405.12237, 2024.

Christoph Hertrich. Facets of neural network complexity. Technische Universitaet Berlin (Germany), 2022.

Ralf Hinze. Adjoint folds and unfolds—an extended study. Science of Computer Programming, 78(11):2108–2159,
2013.

Ralf Hinze and Nicolas Wu. Histo-and dynamorphisms revisited. In Proceedings of the 9th ACM Special Interest
Group on Programming Languages Workshop on Generic Programming, pages 1–12, 2013.

Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Unifying structured recursion schemes. ACM Special Interest Group
on Programming Languages Notices, 48(9):209–220, 2013.

Ralf Hinze, Nicolas Wu, and Jeremy Gibbons. Conjugate hylomorphisms–or: The mother of all structured recursion
schemes. ACM Special Interest Group on Programming Languages Notices, 50(1):527–538, 2015.

Charles Anthony Richard Hoare. Unified theories of programming. In Mathematical methods in program develop-
ment, pages 313–367. Springer, 1997.

Charles Antony Richard Hoare. Chapter ii: Notes on data structuring. In Structured Programming, pages 83–174.
1972.

Charles Antony Richard Hoare and Jifeng He. The weakest prespecification. Information Processing Letters, 24(2):
127–132, 1987.

Robert C Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning,
11:63–90, 1993.

Hao Hu, Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Learning optimal decision trees with maxsat
and its integration in adaboost. In 29th International Joint Conference on Artificial Intelligence and the 17th
Pacific Rim International Conference on Artificial Intelligence, 2020.

Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Advances in Neural Information
Processing Systems, 32, 2019.

Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. Deriving structural hylomorphisms from recursive definitions.
ACM Sigplan Notices, 31(6):73–82, 1996.

Liang Huang. Advanced dynamic programming in semiring and hypergraph frameworks. Coling 2008: Advanced
Dynamic Programming in Computational Linguistics: Theory, Algorithms and Applications-Tutorial Notes, pages
1–18, 2008.

Toshihide Ibaraki. The power of dominance relations in branch-and-bound algorithms. Journal of the ACM, 24(2):
264–279, 1977.

Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted voronoi diagrams and randomization to
variance-based k-clustering. In Proceedings of the tenth annual symposium on Computational geometry, pages
332–339, 1994.

Johan Theodoor Jeuring. Theories for algorithm calculation. Utrecht University, 1993.

Su Jia, Fatemeh Navidi, R Ravi, et al. Optimal decision tree with noisy outcomes. Advances in Neural Information
Processing Systems, 32, 2019.

Richard M Karp and Michael Held. Finite-state processes and dynamic programming. SIAM Journal on Applied
Mathematics, 15(3):693–718, 1967.

Jon Kleinberg and Eva Tardos. Algorithm design. Pearson Education India, 2006.

Donald E Knuth. Structured programming with go to statements. ACM Computing Surveys, 6(4):261–301, 1974.

Walter H Kohler and Kenneth Steiglitz. Characterization and theoretical comparison of branch-and-bound algo-
rithms for permutation problems. Journal of the ACM, 21(1):140–156, 1974.

164

Warren L. G. Koontz, Patrenahalli M. Narendra, and Keinosuke Fukunaga. A branch and bound clustering algo-
rithm. IEEE Transactions on Computers, 100(9):908–915, 1975.

Donald L Kreher and Douglas R Stinson. Combinatorial algorithms: generation, enumeration, and search. ACM
Special Interest Group on Algorithms and Computation Theory News, 30(1):33–35, 1999.

Frank R Kschischang, Brendan J Frey, and H-A Loeliger. Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory, 47(2):498–519, 2001.

Joachim Lambek. A fixpoint theorem for complete categories. Mathematische Zeitschrift, 103:151–161, 1968.

Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is np-complete. Information
Processing Letters, 5(1):15–17, 1976.

Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized and scalable optimal sparse
decision trees. pages 6150–6160. Proceedings of Machine Learning Research, 2020.

Max A Little. Machine learning for signal processing: data science, algorithms, and computational statistics. Oxford
University Press, USA, 2019.

Max A Little, Xi He, and Ugur Kayas. Polymorphic dynamic programming by algebraic shortcut fusion. Formal
Aspects of Computing, May 2024. ISSN 0934-5043. doi: 10.1145/3664828. URL https://doi.org/10.1145/
3664828. (in press).

Yufeng Liu and Yichao Wu. Variable selection via a combination of the l0 and l1 penalties. Journal of Computational
and Graphical Statistics, 16(4):782–798, 2007.

Philip M Long and Rocco A Servedio. Random classification noise defeats all convex potential boosters. In
Proceedings of the 25th International Conference on Machine learning, pages 608–615, 2008.

Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means problem is np-hard. Theo-
retical Computer Science, 442:13–21, 2012.

Andrew Makhorin. GLPK (gnu linear programming kit). http://www.gnu.org/s/glpk/glpk.html, 2008.

Grant Malcolm. Data structures and program transformation. Science of Computer Programming, 14(2-3):255–279,
1990.

Petros Maragos, Vasileios Charisopoulos, and Emmanouil Theodosis. Tropical geometry and machine learning.
Proceedings of the IEEE, 109(5):728–755, 2021.

Rahul Mazumder, Xiang Meng, and Haoyue Wang. Quant-bnb: A scalable branch-and-bound method for optimal
decision trees with continuous features. In International Conference on Machine Learning, pages 15255–15277.
PMLR, 2022.

Lambert Meertens. First steps towards the theory of rose trees. Centrum Wiskunde Informatica, Amsterdam, 1988.

LGLT Meertens. Algorithmics: Towards programming as a mathematical activity. 1986.

Nimrod Megiddo and Kenneth J Supowit. On the complexity of some common geometric location problems. SIAM
Journal on Computing, 13(1):182–196, 1984.

Bartosz Milewski. Category theory for programmers. Blurb, 2018.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2018.

Andrey Mokhov. Algebraic graphs with class (functional pearl). ACM Special Interest Group on Programming
Languages Notices, 52(10):2–13, 2017.

Sreerama K Murthy, Simon Kasif, and Steven Salzberg. A system for induction of oblique decision trees. Journal
of Artificial Intelligence Research, 2:1–32, 1994.

165

https://doi.org/10.1145/3664828
https://doi.org/10.1145/3664828

Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva. Learning optimal decision trees with sat.
In 27th International Joint Conference on Artificial Intelligence, pages 1362–1368. International Joint Conferences
on Artificial Intelligence Organization, 7 2018. doi: 10.24963/ijcai.2018/189. URL https://doi.org/10.24963/
ijcai.2018/189.

John Ashworth Nelder and Robert WM Wedderburn. Generalized linear models. Journal of the Royal Statistical
Society: Series A (General), 135(3):370–384, 1972.

Tan Nguyen and Scott Sanner. Algorithms for direct 0–1 loss optimization in binary classification. In Sanjoy
Dasgupta and David McAllester, editors, Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research, pages 1085–1093, Atlanta, Georgia, USA, 17–19 Jun 2013.
Proceedings of Machine Learning Research. URL https://proceedings.mlr.press/v28/nguyen13a.html.

Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems. Society for Industrial and Applied Mathematics Review, 33(1):60–100, 1991.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics: A primer. John Wiley &
Sons, 2016.

Jiming Peng and Yu Xia. A cutting algorithm for the minimum sum-of-squared error clustering. In Proceedings of
the 2005 SIAM International Conference on Data Mining, pages 150–160. SIAM, 2005.

The Univalent Foundations Program. Homotopy type theory: univalent foundations of mathematics. ArXiv preprint
ArXiv:1308.0729, 2013.

Adolphe Quetelet et al. Correspondance mathématique et physique, volume 2. Impr. d’ H. Vanderkeriehove, 1826.

J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

Miroslav Rada and Michal Cerny. A new algorithm for enumeration of cells of hyperplane arrangements and a
comparison with avis and fukuda’s reverse search. SIAM Journal on Discrete Mathematics, 32(1):455–473, 2018.

Jiayang Ren, Kaixun Hua, and Yankai Cao. Global optimal k-medoids clustering of one million samples. Advances
in Neural Information Processing Systems, 35:982–994, 2022.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable
models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

Cynthia Rudin and Joanna Radin. Why are we using black box models in ai when we don’t need to. Harvard Data
Science Review, 1(2):1–9, 2019.

Frank Ruskey. Combinatorial generation. Preliminary Working Draft. University of Victoria, Victoria, BC, Canada,
11:20, 2003.

Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer, 2003.

Robert Sedgewick. Permutation generation methods. ACM Computing Surveys, 9(2):137–164, 1977.

Michael Ian Shamos and Dan Hoey. Closest-point problems. In 16th Annual Symposium on Foundations of Computer
Science, pages 151–162. IEEE, 1975.

Micha Sharir. Almost tight upper bounds for lower envelopes in higher dimensions. Discrete & Computational
Geometry, 12(3):327–345, 1994.

Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Information Fusion, 81:
84–90, 2022.

Richard P Stanley et al. An introduction to hyperplane arrangements. Geometric Combinatorics, 13(389-496):24,
2004.

Yufang Tang, Xueming Li, Yan Xu, Shuchang Liu, and Shuxin Ouyang. A mixed integer programming approach
to maximum margin 0–1 loss classification. In 2014 International Radar Conference, pages 1–6. IEEE, 2014.

166

https://doi.org/10.24963/ijcai.2018/189
https://doi.org/10.24963/ijcai.2018/189
https://proceedings.mlr.press/v28/nguyen13a.html

Cristina Tîrnăucă, Domingo Gómez-Pérez, José L Balcázar, and José L Montaña. Global optimality in k-means
clustering. Information Sciences, 439:79–94, 2018.

Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and computational geometry.
Chemical Rubber Company press, 2017.

Hoang Tuy. Concave programming under linear constraints. Soviet Math., 5:1437–1440, 1964.

Berk Ustun and Cynthia Rudin. Supersparse linear integer models for optimized medical scoring systems. Machine
Learning, 102:349–391, 2016.

Berk Ustun and Cynthia Rudin. Learning optimized risk scores. Journal of Machine Learning Research, 20(150):
1–75, 2019.

Berk Tevfik Berk Ustun. Simple linear classifiers via discrete optimization: learning certifiably optimal scoring
systems for decision-making and risk assessment. PhD thesis, Massachusetts Institute of Technology, 2017.

Tarmo Uustalu, Varmo Vene, and Alberto Pardo. Recursion schemes from comonads. Nordic Journal of Computing,
8(3):366–390, 2001.

Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th Annual Symposium
on Foundations of Computer Science, pages 332–337. IEEE Computer Society, 1989.

Vladimir Vapnik. The nature of statistical learning theory. Springer Science & Business Media, 1999.

Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a binary linear program formulation.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 1625–1632, 2019.

Philip Wadler. Theorems for free! In Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, pages 347–359, 1989.

Edward Wang, Riley Ballachay, Genpei Cai, Yankai Cao, and Heather L Trajano. Predicting xylose yield from
prehydrolysis of hardwoods: A machine learning approach. Frontiers in Chemical Engineering, 4:994428, 2022.

Wolfgang Wechler. Universal algebra for computer scientists, volume 25. Springer Science & Business Media, 2012.

Dominic JA Welsh. Matroid theory. Courier Corporation, 2010.

H WHITNEY. On the abstract properties of linear dependence. American Journal of Mathematics, 57:509–533,
1935.

Darshana Chitraka Wickramarachchi, Blair Lennon Robertson, Marco Reale, Christopher John Price, and Jennifer
Brown. Hhcart: an oblique decision tree. Computational Statistics & Data Analysis, 96:12–23, 2016.

Edwin B Wilson and Jane Worcester. The determination of ld 50 and its sampling error in bio-assay. Proceedings
of the National Academy of Sciences, 29(2):79–85, 1943.

He Xi and Max A. Little. Exact 0-1 loss linear classification algorithms, April 2023. URL https://github.com/
XiHegrt/E01Loss.

Zhixuan Yang and Nicolas Wu. Fantastic morphisms and where to find them: a guide to recursion schemes. In
International Conference on Mathematics of Program Construction, pages 222–267. Springer, 2022.

Rui Zhang, Rui Xin, Margo Seltzer, and Cynthia Rudin. Optimal sparse regression trees. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pages 11270–11279, 2023.

Weixiong Zhang. Branch-and-bound search algorithms and their computational complexity. University of Southern
California, Information Sciences Institute, 1996.

167

https://github.com/XiHegrt/E01Loss
https://github.com/XiHegrt/E01Loss

Index
2-category, 22

A
adjacent transposition, 43
adjunction, 73
adjunctions, 21
affine hyperplane, 96
algebraic directed graph, 59
Algebraic geometry, 95
algebraic variety, 96
anamorphism, 69
assignment-combination nested generator, 131
associativity, 63

B
binomial coefficient, 35
Boolean-valued function, 74
Boom-hierarchy family, 32
bounding techniques, 16
branch-and-Bound, 16
branch-and-bound, 85
branching rules, 16
Bregman divergence, 100
Bregman Voronoi diagram, 100
bumping, 82

C
Cartesian product fusion, 65, 68
catamorphism, 14, 16, 20, 51
catamorphism characterization theorem, 56
catamorphism fusion law, 56
catamorphism recursive optimization framework, 88
characteristic vector, 36
combinatorial configuration, 11
combinatorial Gray codes, 32, 40
combinatorial search space, 11
Comonads, 21
conjugate, 73
constant amortized time, 13
constant field, 25
constructive algorithmics, 11
continuous parameter, 11
convolution product, 65
coproducts, 23
corecursive algebra, 73
corecursive datatype, 70
corecursive datatypes, 20
course-of-values recursion, 89
Cover’s dichotomies counting formula, 98
cross product fusion, 65, 67
curried functions, 25
cutting-plane algorithms, 10

D
data structures, 32

decision region, 134
dependent set, 80
discrete parameter, 11
Divide-and-conquer, 16
divide-and-conquer, 21
dual space, 99
Dynamic programming, 15

E
Eilenberg-Wright lemma, 76
Embarrassingly parallel, 10, 48
embarrassingly parallel, 58
empirical error, 11
endofunctor, 52
Euclidean algorithm, 20
Euclidean Voronoi diagram, 100
exhaustive search, 11
exhaustive thinning, 81

F
finite dominance relation, 78, 83
free field, 25
free theorem, 19
functional margin, 126
functional F-algebras, 76
Fusion, 17

G
general position, 96
generalization error, 11
generalized divide-and-conque, 71
general-purpose algorithms, 9
generate-evaluate-filter-select paradigm, 11
Generatively recursion, 20
generator semiring, 19
geometric margin, 126
global upper bound, 78, 83, 84
greedy condition, 78
Greedy method, 15

H
Hask, 22
hinge loss, 121
Histomorphisms, 21
hylomorphism, 50, 69, 70
hylomorphism recursive optimization framework, 88
hyperplane, 96
hyperplane-based, 106
hypersurface, 96
hypothesis set, 7

I
Incidence relations, 99
inclusion relation, 75
incremental sign construction algorithm, 107

168

independent set, 80
infix form, 25
initial algebra, 20
initial object, 55
initial objects, 23
integer SDP generator, 40
Integer sequential decision process generators, 31
interpolation regime, 9

K
K-clustering problem, 141
K-means problem, 141
K-medoids problem, 141

L
least fixed point, 55
Lexicographic ordering, 39
lexicographical generation, 32
linear dichotomy, 101
linear hyperplane, 96
linear programming-based, 106
List comprehension, 26
list partitioning, 18
list partitions, 32

M
malformed graph, 58
F-algebra, 51
matroid theory, 78, 80
maximal degree, 95
maximum sublist sum problem, 89
mergesort algorithm, 71
mixed continuous-discrete objective function, 11
mixed continuous-discrete optimization problems, 8
monomial, 95
monotonicity, 19
multiclass assignments, 32

N
natural transformations, 23
non-deterministic mapping, 74

O
optimal configuration problem, 90
optimal value problem, 90
optimistic lower bound, 84
ordinary SDP, 14

P
partially fusable generator, 143
partially ordered set, 23
perfect thinning algorithm, 81
permutations, 32
pessimistic upper bound, 84
polymorphic functions, 26
polynomial functor, 52
polynomial functors, 23
polynomial ring, 96

prefix form, 25
prefix-closed, 33
primal space, 99
principle of optimality, 13, 15
products, 23
pruning, 16
pseudo-Haskell code, 75

Q
quicksort algorithm, 72

R
ranking, 39
ranking function, 39
record syntax, 55
recursive coalgebra, 71, 73
relational algebra, 19
relational F-algebras, 76
ρ-margin loss, 126

S
search strategies, 16
section, 26
segmentation, 18
segment-closed, 63
sequence alignment problem, 89
sequential decision process, 12, 33
set comprehension, 26
shifted 0-1 loss, 126
special position, 96
structured recursion, 20
structured recursion schemes, 19, 21
subface, 97
sublists, 32
superface, 97
symmetric difference, 40

T
terminal algebra, 55
terminal coalgebras, 20
terminal objects, 23
the Bird-Meertens formalism, 20
thin-introduction rule, 79
thinning after sorting, 81
thinning algorithm, 78
thinning theorem, 78
Trotter-Johnson algorithm, 43
true label, 11
type constructors, 23
type synonyms, 25
typeclass, 27

U
unique child predicate, 107
universal construction, 23
universal property, 23
unranking function, 39

169

V
Veronese embedding, 104

Z
Zygomorphism, 21

170

A Proofs
Corollary 5. Given a functional algebra alg :: func [a] -> [a] and a relational algebra algR :: func a -> a.
Assume the base functor is the cons-list ListFr a. We have following equality establish the connection between
the functional algebra and the power transpose of the relational algebra ΛalgR :: func a -> [a]

concat . map (ΛalgR . (Cons a)) = alg . (Cons a) (154)

Proof. we have following equational reasoning

concat . map (ΛalgR . (Cons a))
≡ Λ-fusion law and Cons a is a function

concat . map Λ(algR . Cons a)
≡ ER = concat . map (ΛR), where R is a relation, E is the existential image functor

E(algR . cons a)
≡ definition of E
Λ(algR . Cons a . ∈)

≡ definition of the functor
Λ(algR . fmap ∈ . Cons a)

≡ Eilenberg-Wright Lemma: alg = Λ(algR . fmap ∈)
alg . (Cons a)

The formal definition of the existential image functor E and inclusion relation ∈ can be found in Bird and
De Moor [1996].

More generally, given a base functor F, we have

concat . P (ΛalgR . F) = alg . F. (155)

The proof when the base functor F is defined by the join-list datatype, we have

concat . crp (ΛalgR . F) = alg . F

Proof. It can be proved by following

concat . P (ΛalgR . F)
≡ Λ-fusion law and F is a function

concat . P (Λ(algR . F))
≡ Pf = Λ(f. ∈), where f is a function

concat . Λ(Λ(algR . F) . ∈)
≡ Λ-fusion law

concat . Λ(ΛalgR . F . ∈)
≡ definition of the functor
concat . Λ(Λ(algR . fmap ∈ . F))

≡ fmap ∈ . F is a function, and Λ-fusion law
concat . Λ(ΛalgR . fmap ∈ . F))

≡ definition of the cross product crp (f . F) = Λ(f . fmap ∈ . F)
concat . crp (ΛalgR . F)

171

	I Background
	I.1 Introduction
	I.1.1 Machine learning
	I.1.2 Motivations
	I.1.2.1 Why study exact machine learning algorithms for simple (interpretable) models?
	I.1.2.2 Shortcomings of existing general-purpose exact algorithms

	I.2 Foundations
	I.2.1 Combinatorial optimization
	I.2.1.1 Combinatorial optimization problem specification
	I.2.1.2 Combinatorial generation and combinatorial optimization
	I.2.1.3 What is an efficient combinatorial generator and where to find it
	I.2.1.4 Sequential decision process

	I.2.2 Combinatorial optimization algorithm design through a modern lens
	I.2.2.1 An overview of classical combinatorial optimization methods
	I.2.2.2 Summary of key components in designing efficient combinatorial algorithms
	I.2.2.3 Relationships between different combinatorial optimization methods
	I.2.2.4 Example: deriving efficient dynamic programming algorithm from scratch

	I.2.3 Structured recursion schemes
	I.2.3.1 What is recursion
	I.2.3.2 Structured recursion and generative recursion
	I.2.3.3 Development history of constructive algorithmics

	I.2.4 Category theory and Haskell
	I.2.4.1 Categories and functors
	I.2.4.2 Universal constructions
	I.2.4.3 Introduction to Haskell

	I.3 An overview of the thesis
	I.3.1 General theory – Principles for designing efficient combinatorial optimization algorithms
	I.3.2 Specialized theory – designing tractable algorithms for fundamental problems in machine learning
	I.3.3 End-to-end implementation in Haskell

	I.4 Contributions

	II General theory: Principles for designing efficient combinatorial optimization algorithms
	II.1 Combinatorial generation
	II.1.1 Containers/datatypes
	II.1.2 Sequential decision process for basic combinatorial structures
	II.1.2.1 Sequential decision process combinatorial generator in Haskell
	II.1.2.2 Sublists, sequence and K-sublists
	II.1.2.3 Assignments
	II.1.2.4 Permutations
	II.1.2.5 K-permutations
	II.1.2.6 List partitions

	II.1.3 Lexicographic generation
	II.1.4 Combinatorial Gray codes
	II.1.4.1 Sublists
	II.1.4.2 K-sublists
	II.1.4.3 Permutations

	II.1.5 Integer sequential decision process combinatorial generator
	II.1.5.1 The binary reflected Gray code SDP generator
	II.1.5.2 K-combination SDP generator with revolving door ordering

	II.1.6 Chapter discussion

	II.2 Constructive algorithmics
	II.2.1 What is constructive algorithmics and why we need to care about it?
	II.2.2 Algebraic datatypes and catamorphism
	II.2.2.1 An illustrative example: snoc-list
	II.2.2.2 Polynomial functors
	II.2.2.3 F-algebras and universal algebra
	II.2.2.4 Catamorphism characterization theorem
	II.2.2.5 Various useful recursive datatypes

	II.2.3 Catamorphism combinatorial generation
	II.2.3.1 Cross product operator
	II.2.3.2 Catamorphism generators based on cons-list
	II.2.3.3 Catamorphism generators based on join-list
	II.2.3.4 Built complex combinatorial structures from the simpler basic structures

	II.2.4 Structured recursion schemes
	II.2.4.1 Anamorphism
	II.2.4.2 Hylomorphism
	II.2.4.3 Hylomorphisms and divide-and-conquer algorithms
	II.2.4.4 Recursive coalgebras

	II.2.5 Foundations for the algebra of programming
	II.2.5.1 Motivations for using relational algebra
	II.2.5.2 Definition of relation
	II.2.5.3 Reformulate the combinatorial optimization problem specification
	II.2.5.4 Relational F-algebras
	II.2.5.5 Monotonic algebras

	II.2.6 Thinning
	II.2.6.1 What is thinning
	II.2.6.2 Different implementations of thinning
	II.2.6.3 Dominance relations

	II.2.7 Backtracking and branch-and-bound
	II.2.8 Recursive optimization framework
	II.2.8.1 Hylomorphism recursive optimization framework
	II.2.8.2 Catamorphism recursive optimization framework

	II.2.9 Reconcile combinatorial optimization methods
	II.2.10 From theory to practice
	II.2.10.1 Maximum sublist sum problem
	II.2.10.2 Sequence alignment problem

	II.2.11 Chapter discussion

	II.3 Combinatorial geometry
	II.3.1 Foundations
	II.3.1.1 Affine varieties and polynomials
	II.3.1.2 Arrangements
	II.3.1.3 The combinatorial complexity of the arrangements
	II.3.1.4 Points and hyperplanes duality
	II.3.1.5 Voronoi diagram

	II.3.2 Classification problems and duality
	II.3.2.1 Linear classification and duality
	II.3.2.2 Growth function and the complexity classification problem
	II.3.2.3 Non-linear (polynomial) classification and Veronese embedding

	II.3.3 Methods for cell enumeration
	II.3.3.1 Linear programming-based method for cell enumeration
	II.3.3.2 Hyperplane-based method for cell enumeration
	II.3.3.3 Efficiency of cell enumeration methods in combinatorial optimization

	II.3.4 Euclidean Voronoi diagram and K-means problem
	II.3.4.1 K-means problem and Euclidean Voronoi partition
	II.3.4.2 The optimality of the K-means problem
	II.3.4.3 The sign vector of the Euclidean Voronoi diagram
	II.3.4.4 Variable replacement and optimal K-means clustering
	II.3.4.5 Duality and 2-means problem

	II.3.5 Chapter discussion

	III Specialized theory: Designing tractable algorithms for fundamental problems in machine learning
	III.1 Terminology
	III.2 Classification problem
	III.2.1 Related studies
	III.2.2 Problem specification
	III.2.3 The combinatorial essence of the linear classification problem
	III.2.3.1 Hyperplane-based (H-based) algorithm
	III.2.3.2 Linear programming-based (LP-based) algorithm

	III.2.4 Further discussions
	III.2.4.1 Difference between H-based algorithm and LP-based algorithm
	III.2.4.2 Non-linear (polynomial hypersurface) classification
	III.2.4.3 Margin loss linear classifier

	III.3 Empirical risk minimization for ReLU network
	III.3.1 Related studies
	III.3.2 Problem specification
	III.3.3 The combinatorial essence of the ReLU network
	III.3.3.1 Hyperplane-based method
	III.3.3.2 Linear programming-based method

	III.3.4 Further discussion
	III.3.4.1 Acceleration methods
	III.3.4.2 Applying integer SDP generator to save memory

	III.4 Decision tree problems
	III.4.1 Related studies
	III.4.2 Problem specification
	III.4.3 The combinatorial essence of decision tree problems
	III.4.4 Efficient hyperplane decision tree generators
	III.4.4.1 Difficulties in constructing a hyperplane decision tree (K-permutation of hyperplanes) generator
	III.4.4.2 Haskell implementation of the combination-permutation nested generator

	III.4.5 Further discussion
	III.4.5.1 Acceleration techniques

	III.5 The K-clustering problems
	III.5.1 Related studies
	III.5.2 Problem specification
	III.5.3 The combinatorial essence of the K-clustering problems

	III.6 Time-space complexity trade-off in designing exact algorithms

	IV End-to-end implementation in Haskell
	IV.1 0-1 loss linear classification algorithm
	IV.1.1 An efficient combination-sequence generator
	IV.1.2 Exhaustive, incremental cell enumeration based on join-list
	IV.1.3 Empirical analysis
	IV.1.3.1 Real-world data set classification performance
	IV.1.3.2 Out-of-sample generalization tests
	IV.1.3.3 Run-time complexity analysis

	IV.2 Exact K-medoids algorithm
	IV.2.1 Exhaustive, K-medoids enumeration based on join-list
	IV.2.2 Empirical analysis
	IV.2.2.1 Performance on real-world datasets
	IV.2.2.2 Time complexity analysis for serial implementation

	IV.3 Discussion
	A Proofs

